Mantieni tutto organizzato con le raccolte
Salva e classifica i contenuti in base alle tue preferenze.
Introduzione a SQL in Bigtable
Oltre alle API di amministrazione e dati, Bigtable supporta le query SQL.
Puoi utilizzare SQL per eseguire query sui dati di Bigtable nei seguenti modi:
Per lo sviluppo di applicazioni a bassa latenza, GoogleSQL per
Bigtable
Per l'elaborazione batch e l'ETL, Spark SQL
Per analizzare i dati provenienti da piรน origini, BigQuery
GoogleSQL per Bigtable
GoogleSQL รจ un linguaggio di query utilizzato da piรน Google Cloud
servizi, tra cui Spanner e BigQuery. Puoi creare
e eseguire query GoogleSQL in Bigtable
Studio nella Google Cloud console,
oppure puoi eseguirle a livello di programmazione utilizzando una delle librerie client per
Bigtable che supportano le query SQL. Per ulteriori informazioni, consulta Utilizzare SQL con una libreria client Bigtable.
GoogleSQL per Bigtable รจ simile a Cassandra Query Language (CQL) per molti aspetti e include un tipo di dati mappa progettato per eseguire query sui dati di Bigtable archiviati in famiglie di colonne, colonne e celle.
Per i casi d'uso di data science o per altri ETL ed elaborazioni collettive, il connettore Bigtable Spark ti consente di leggere e scrivere i dati di Bigtable utilizzando Spark SQL. Per ulteriori informazioni, consulta
Utilizzare il connettore Bigtable Spark.
BigQuery
Se vuoi combinare i dati provenienti da piรน origini, tra cui Bigtable, ed eseguire analisi ad hoc in batch, puoi creare tabelle esterne BigQuery ed eseguire query SQL da BigQuery. Per ulteriori informazioni, consulta
Esegui query e analizza i dati di Bigtable con BigQuery.
[[["Facile da capire","easyToUnderstand","thumb-up"],["Il problema รจ stato risolto","solvedMyProblem","thumb-up"],["Altra","otherUp","thumb-up"]],[["Difficile da capire","hardToUnderstand","thumb-down"],["Informazioni o codice di esempio errati","incorrectInformationOrSampleCode","thumb-down"],["Mancano le informazioni o gli esempi di cui ho bisogno","missingTheInformationSamplesINeed","thumb-down"],["Problema di traduzione","translationIssue","thumb-down"],["Altra","otherDown","thumb-down"]],["Ultimo aggiornamento 2025-09-04 UTC."],[[["\u003cp\u003eBigtable supports SQL queries through multiple methods, including GoogleSQL for low-latency applications, Spark SQL for batch processing and ETL, and BigQuery for analyzing data from multiple sources.\u003c/p\u003e\n"],["\u003cp\u003eGoogleSQL for Bigtable, which is similar to Cassandra Query Language (CQL), can be used within the Google Cloud console via Bigtable Studio, or programmatically through the Bigtable client library for Java.\u003c/p\u003e\n"],["\u003cp\u003eThe Bigtable Spark connector enables reading and writing Bigtable data with Spark SQL, beneficial for data science and batch processing needs.\u003c/p\u003e\n"],["\u003cp\u003eBigQuery can query and analyze data from Bigtable alongside other sources using external tables, facilitating batch and ad hoc analytics.\u003c/p\u003e\n"]]],[],null,["Introduction to SQL in Bigtable\n\nIn addition to its Admin and Data APIs, Bigtable supports SQL queries.\nYou can use SQL to query your Bigtable data in the following\nways:\n\n- For low-latency application development, GoogleSQL for Bigtable\n- For batch processing and ETL, Spark SQL\n- To analyze data from multiple sources, BigQuery\n\nGoogleSQL for Bigtable\n\nGoogleSQL is a query language used by multiple Google Cloud\nservices, including Spanner and BigQuery. You can create\nand run GoogleSQL queries in [Bigtable\nStudio](/bigtable/docs/manage-data-using-console) in the Google Cloud console,\nor you can run them programmatically using one of the client libraries for\nBigtable that support SQL queries. For more information, see [Use\nSQL with a Bigtable client\nlibrary](/bigtable/docs/googlesql-overview#client-libraries).\n\nGoogleSQL for Bigtable is similar to the Cassandra\nquery Language (CQL) in many ways, and it includes a map data type, designed to\nquery the Bigtable data stored in column families, columns, and\ncells.\n\nTo get started, see the [GoogleSQL for\nBigtable overview](/bigtable/docs/googlesql-overview).\n\nSpark SQL\n\nFor data science use cases or other batch processing and ETL, the\nBigtable Spark connector lets you read and write\nBigtable data using Spark SQL. For more information, see\n[Use the Bigtable Spark connector](/bigtable/docs/use-bigtable-spark-connector).\n\nBigQuery\n\nIf you want to blend data from multiple sources, including\nBigtable, and run batch, ad hoc analytics, you can create\nBigQuery external tables and run SQL queries from\nBigQuery. For more information, see\n[Query and analyze Bigtable data with BigQuery](/bigtable/docs/bigquery-analysis).\n\nWhat's next\n\n- [Learn how to run queries in the Google Cloud console without SQL.](/bigtable/docs/query-builder)\n- [Explore the GoogleSQL for Bigtable reference documentation.](/bigtable/docs/reference/sql/functions-all)\n- [Compare tables and views](/bigtable/docs/tables-and-views)"]]