Modello Pub/Sub a BigQuery

Il modello Da Pub/Sub a BigQuery รจ una pipeline di streaming che legge i messaggi in formato JSON da Pub/Sub e li scrive in una tabella BigQuery. Se vuoi, puoi fornire una funzione definita dall'utente9;utente (UDF) scritta in JavaScript per elaborare i messaggi in arrivo.

Prima di eseguire una pipeline Dataflow per questo scenario, valuta se una sottoscrizione BigQuery di Pub/Sub con una UDF soddisfa i tuoi requisiti.

Requisiti della pipeline

  • La tabella BigQuery deve esistere e avere uno schema.
  • I dati dei messaggi Pub/Sub devono utilizzare il formato JSON oppure devi fornire una UDF che converta i dati dei messaggi in JSON. I dati JSON devono corrispondere allo schema della tabella BigQuery. Ad esempio, se i payload JSON sono formattati come {"k1":"v1", "k2":"v2"}, la tabella BigQuery deve avere due colonne stringa denominate k1 e k2.
  • Specifica il parametro inputSubscription o inputTopic, ma non entrambi.

Parametri del modello

Parametri obbligatori

  • outputTableSpec: la tabella BigQuery in cui scrivere, formattata come PROJECT_ID:DATASET_NAME.TABLE_NAME.

Parametri facoltativi

  • inputTopic: l'argomento Pub/Sub da cui leggere, formattato come projects/<PROJECT_ID>/topics/<TOPIC_NAME>.
  • inputSubscription: la sottoscrizione Pub/Sub da cui leggere, formattata come projects/<PROJECT_ID>/subscriptions/<SUBCRIPTION_NAME>.
  • outputDeadletterTable: la tabella BigQuery da utilizzare per i messaggi che non sono riusciti a raggiungere la tabella di output, formattata come PROJECT_ID:DATASET_NAME.TABLE_NAME. Se la tabella non esiste, viene creata quando viene eseguita la pipeline. Se questo parametro non รจ specificato, viene utilizzato il valore OUTPUT_TABLE_SPEC_error_records.
  • useStorageWriteApiAtLeastOnce: quando utilizzi l'API Storage Write, specifica la semantica di scrittura. Per utilizzare la semantica almeno una volta (https://beam.apache.org/documentation/io/built-in/google-bigquery/#at-least-once-semantics), imposta questo parametro su true. Per utilizzare la semantica di esecuzione esatta, imposta il parametro su false. Questo parametro si applica solo quando useStorageWriteApi รจ true. Il valore predefinito รจ false.
  • useStorageWriteApi: se รจ true, la pipeline utilizza l'API BigQuery Storage Write (https://cloud.google.com/bigquery/docs/write-api). Il valore predefinito รจ false. Per ulteriori informazioni, consulta Utilizzo dell'API Storage Write (https://beam.apache.org/documentation/io/built-in/google-bigquery/#storage-write-api).
  • numStorageWriteApiStreams: quando utilizzi l'API Storage Write, specifica il numero di flussi di scrittura. Se useStorageWriteApi รจ true e useStorageWriteApiAtLeastOnce รจ false, devi impostare questo parametro. Il valore predefinito รจ 0.
  • storageWriteApiTriggeringFrequencySec: quando si utilizza l'API Storage Write, specifica la frequenza di attivazione, in secondi. Se useStorageWriteApi รจ true e useStorageWriteApiAtLeastOnce รจ false, devi impostare questo parametro.
  • javascriptTextTransformGcsPath: l'URI Cloud Storage del file .js che definisce la funzione definita dall'utente (UDF) JavaScript da utilizzare. Ad esempio, gs://my-bucket/my-udfs/my_file.js.
  • javascriptTextTransformFunctionName: il nome della funzione definita dall'utente (UDF) JavaScript da utilizzare. Ad esempio, se il codice della funzione JavaScript รจ myTransform(inJson) { /*...do stuff...*/ }, il nome della funzione รจ myTransform. Per esempi di funzioni JavaScript definite dall'utente, vedi Esempi di UDF (https://github.com/GoogleCloudPlatform/DataflowTemplates#udf-examples).
  • javascriptTextTransformReloadIntervalMinutes: specifica la frequenza con cui ricaricare la funzione definita dall'utente, in minuti. Se il valore รจ maggiore di 0, Dataflow controlla periodicamente il file UDF in Cloud Storage e ricarica la UDF se il file viene modificato. Questo parametro ti consente di aggiornare la UDF mentre la pipeline รจ in esecuzione, senza dover riavviare il job. Se il valore รจ 0, il ricaricamento delle UDF รจ disattivato. Il valore predefinito รจ 0.

Funzione definita dall'utente

Se vuoi, puoi estendere questo modello scrivendo una funzione definita dall'utente (UDF). Il modello chiama la UDF per ogni elemento di input. I payload degli elementi vengono serializzati come stringhe JSON. Per saperne di piรน, consulta Creare funzioni definite dall'utente per i modelli Dataflow.

Specifiche della funzione

La UDF ha le seguenti specifiche:

  • Input: il campo dati del messaggio Pub/Sub, serializzato come stringa JSON.
  • Output: una stringa JSON che corrisponde allo schema della tabella BigQuery di destinazione.
  • Esegui il modello

    Console

    1. Vai alla pagina Crea job da modello di Dataflow.
    2. Vai a Crea job da modello
    3. Nel campo Nome job, inserisci un nome univoco per il job.
    4. (Facoltativo) Per Endpoint a livello di regione, seleziona un valore dal menu a discesa. La regione predefinita รจ us-central1.

      Per un elenco delle regioni in cui puoi eseguire un job Dataflow, consulta Localitร  di Dataflow.

    5. Dal menu a discesa Modello di dataflow, seleziona the Pub/Sub to BigQuery template.
    6. Nei campi dei parametri forniti, inserisci i valori dei parametri.
    7. (Facoltativo) Per passare dall'elaborazione "exactly-once" alla modalitร  di streaming "almeno una volta", seleziona Almeno una volta.
    8. Fai clic su Esegui job.

    gcloud

    Nella shell o nel terminale, esegui il modello:

    gcloud dataflow flex-template run JOB_NAME \
        --gcs-location gs://dataflow-templates-REGION_NAME/VERSION/flex/PubSub_to_BigQuery_Flex \
        --template-file-gcs-location REGION_NAME \
        --staging-location STAGING_LOCATION \
        --parameters \
    inputTopic=projects/PROJECT_ID/topics/TOPIC_NAME,\
    outputTableSpec=PROJECT_ID:DATASET.TABLE_NAME

    Sostituisci quanto segue:

    • JOB_NAME: un nome univoco del job a tua scelta
    • REGION_NAME: la regione in cui vuoi eseguire il deployment del job Dataflow, ad esempio us-central1
    • VERSION: la versione del modello che vuoi utilizzare

      Puoi utilizzare i seguenti valori:

    • STAGING_LOCATION: la posizione per lo staging dei file locali (ad esempio, gs://your-bucket/staging)
    • TOPIC_NAME: il nome dell'argomento Pub/Sub
    • DATASET: il tuo set di dati BigQuery
    • TABLE_NAME: il nome della tabella BigQuery

    API

    Per eseguire il modello utilizzando l'API REST, invia una richiesta POST HTTP. Per ulteriori informazioni sull'API e sui relativi ambiti di autorizzazione, consulta projects.templates.launch.

    POST https://dataflow.googleapis.com/v1b3/projects/PROJECT_ID/locations/LOCATION/flexTemplates:launch
    {
       "launch_parameter": {
          "jobName": "JOB_NAME",
          "parameters": {
           "inputTopic": "projects/PROJECT_ID/subscriptions/SUBSCRIPTION_NAME",
           "outputTableSpec": "PROJECT_ID:DATASET.TABLE_NAME"
          },
          "containerSpecGcsPath": "gs://dataflow-templates-LOCATION/VERSION/flex/PubSub_to_BigQuery_Flex",
       }
    }

    Sostituisci quanto segue:

    • PROJECT_ID: l'ID progetto Google Cloud in cui vuoi eseguire il job Dataflow
    • JOB_NAME: un nome univoco del job a tua scelta
    • LOCATION: la regione in cui vuoi eseguire il deployment del job Dataflow, ad esempio us-central1
    • VERSION: la versione del modello che vuoi utilizzare

      Puoi utilizzare i seguenti valori:

    • STAGING_LOCATION: la posizione per lo staging dei file locali (ad esempio, gs://your-bucket/staging)
    • TOPIC_NAME: il nome dell'argomento Pub/Sub
    • DATASET: il tuo set di dati BigQuery
    • TABLE_NAME: il nome della tabella BigQuery

    Passaggi successivi