O Cloud Data Loss Prevention (Cloud DLP) agora faz parte da Proteção de dados sensíveis. O nome da API continua o mesmo: API Cloud Data Loss Prevention (DLP). Para saber mais sobre os serviços que compõem a Proteção de dados sensíveis, consulte Visão geral da Proteção de dados sensíveis.
Mantenha tudo organizado com as coleções
Salve e categorize o conteúdo com base nas suas preferências.
A delta-presença (δ-presença) é uma métrica que quantifica a probabilidade de um indivíduo pertencer a um conjunto de dados analisado. Assim como o k-mapa, é possível estimar valores de δ-presença usando a Proteção de dados sensíveis, que usa um modelo estatístico para estimar o conjunto de dados de ataque.
O δ-presença é comparado com os outros métodos de análise de risco, em que o
conjunto de dados de ataque é explicitamente conhecido. Dependendo do tipo de dados,
a proteção de dados sensíveis usa conjuntos de dados disponíveis publicamente (por exemplo, do
Censo dos EUA), um modelo estatístico personalizado (por exemplo, uma ou mais
tabelas do BigQuery especificadas) ou extrapola a
distribuição de valores no conjunto de dados de entrada.
Neste tópico, demonstramos como calcular valores de δ-presença para um conjunto de dados usando
a Proteção de dados sensíveis. Para mais informações sobre δ-presença ou análise de
risco em geral, consulte o tópico sobre o conceito
de análise de risco antes de continuar.
Antes de começar
Antes de continuar, verifique se você fez o seguinte:
Selecione um conjunto de dados do BigQuery para a análise. A Proteção de dados confidenciais
estima a métrica de δ-presença por meio da verificação de uma tabela
do BigQuery.
Para calcular uma estimativa de δ-presença usando a Proteção de dados sensíveis, envie uma solicitação
para o seguinte URL, em que PROJECT_ID indica seu identificador
do projeto:
quasiIds[]: obrigatório. Campos (objetos QuasiId) considerados semi-identificadores a serem verificados e usados para calcular δ-presença. Não existem duas colunas com a mesma tag. Eles podem ser:
Um infoType: faz com que a Proteção de dados sensíveis use o conjunto de dados público relevante como modelo estatístico de população, incluindo CEPs dos EUA, códigos regionais, idades e sexos.
Um InfoType personalizado: uma tag personalizada em que você indica uma tabela auxiliar (um objeto AuxiliaryTable) que contém informações estatísticas sobre os valores possíveis dessa coluna.
A tag inferred: se nenhuma tag semântica estiver indicada, especifique inferred.
A Proteção de Dados Sensíveis infere o modelo estatístico da distribuição de valores nos dados de entrada.
regionCode: um código regional ISO 3166-1 alfa-2 para a Proteção de dados sensíveis usar na modelagem estatística. Esse valor será necessário se nenhuma coluna estiver marcada com um infoType específico da região (por exemplo, um CEP dos EUA) ou um código regional.
auxiliaryTables[]: tabelas auxiliares (objetos StatisticalTable) a serem usadas na análise. Cada tag personalizada usada para marcar uma coluna de semi-identificador (de quasiIds[]) precisa aparecer em exatamente uma coluna de uma tabela auxiliar.
Um objeto BigQueryTable. Inclua todos os itens a seguir para especificar a tabela do BigQuery que será verificada:
projectId: o ID do projeto que contém a tabela.
datasetId: o ID do conjunto de dados da tabela.
tableId: o nome da tabela.
Um conjunto de um ou mais objetos Action, que representam ações a serem executadas, na ordem indicada, na conclusão do job. Cada objeto Action pode conter uma das seguintes ações:
Objeto
SaveFindings: salva os resultados da verificação de análise de risco em
uma tabela do BigQuery.
Como visualizar os resultados do job de δ-presença
Para recuperar os resultados doδ-presença usando o API
REST, envie a seguinte solicitação GET
para o
projects.dlpJobs. Substitua PROJECT_ID pelo ID do projeto e
JOB_ID pelo identificador do job em que você quer receber os resultados.
O código da tarefa foi retornado quando você iniciou o job e também pode ser recuperado ao listar todos os jobs.
GET https://dlp.googleapis.com/v2/projects/PROJECT_ID/dlpJobs/JOB_ID
A solicitação retorna um objeto JSON que contém uma instância do job. Os resultados
da análise estão dentro da chave "riskDetails", em um
objeto
AnalyzeDataSourceRiskDetails. Para mais informações, consulte a referência da API do
recurso
DlpJob.
A seguir
Saiba como calcular o valor de k-anonimato
para um conjunto de dados.
Saiba como calcular o valor de l-diversidade
para um conjunto de dados.
Saiba como calcular o valor de k-mapa
para um conjunto de dados.
[[["Fácil de entender","easyToUnderstand","thumb-up"],["Meu problema foi resolvido","solvedMyProblem","thumb-up"],["Outro","otherUp","thumb-up"]],[["Difícil de entender","hardToUnderstand","thumb-down"],["Informações incorretas ou exemplo de código","incorrectInformationOrSampleCode","thumb-down"],["Não contém as informações/amostras de que eu preciso","missingTheInformationSamplesINeed","thumb-down"],["Problema na tradução","translationIssue","thumb-down"],["Outro","otherDown","thumb-down"]],["Última atualização 2025-08-19 UTC."],[],[],null,["# Computing δ-presence for a dataset\n\nDelta-presence (*δ* -presence) is a metric that quantifies the probability that\nan individual belongs to an analyzed dataset. Like [*k*-map](#compute-k-map),\nyou can estimate *δ*-presence values using Sensitive Data Protection, which\nuses a statistical model to estimate the attack dataset.\n\n*δ*-presence contrasts with the other risk analysis methods, in which the\nattack dataset is explicitly known. Depending on the type of data,\nSensitive Data Protection uses publicly available datasets (for example, from the\nUS Census) or a custom statistical model (for example, one or more\nBigQuery tables that you specify), or it extrapolates from the\ndistribution of values in your input dataset.\n\nThis topic demonstrates how to compute *δ* -presence values for a dataset using\nSensitive Data Protection. For more information about *δ* -presence or risk analysis in\ngeneral, see the [risk analysis concept topic](/sensitive-data-protection/docs/concepts-risk-analysis)\nbefore continuing on.\n| **Note:** At this time, you can only compute *δ* -presence values using the DLP API or Sensitive Data Protection-supported [client\n| libraries](/sensitive-data-protection/docs/libraries). Sensitive Data Protection in the Google Cloud console doesn't support computing *δ*-presence values.\n\n\u003cbr /\u003e\n\n| **Note:** Prematurely canceling an operation midway through a job still incurs costs for the portion of the job that was completed. For more information about billing, see [Sensitive Data Protection pricing](https://cloud.google.com/sensitive-data-protection/pricing).\n\n\u003cbr /\u003e\n\nBefore you begin\n----------------\n\n\nBefore continuing, be sure you've done the following:\n\n1. [Sign in](https://accounts.google.com/Login) to your Google Account.\n2. In the Google Cloud console, on the project selector page, select or create a Google Cloud project.\n[Go to the project selector](https://console.cloud.google.com/projectselector2/home/dashboard)\n3. Make sure that billing is enabled for your Google Cloud project. [Learn how to confirm billing is enabled for your\n project.](/billing/docs/how-to/modify-project)\n4. Enable Sensitive Data Protection.\n[Enable Sensitive Data Protection](https://console.cloud.google.com/flows/enableapi?apiid=dlp.googleapis.com)\n5. Select a BigQuery dataset to analyze. Sensitive Data Protection estimates the *δ*-presence metric by scanning a BigQuery table.\n6. Determine the types of datasets you want to use to model the attack dataset. For more information, see the reference page for the [`DeltaPresenceEstimationConfig`](/sensitive-data-protection/docs/reference/rest/v2/projects.dlpJobs#deltapresenceestimationconfig) object, as well as [Risk\n analysis terms and techniques](/sensitive-data-protection/docs/concepts-risk-analysis#risk_analysis_terms_and_techniques).\n\n\u003cbr /\u003e\n\nCompute *δ*-presence metrics\n----------------------------\n\nTo compute a *δ* -presence estimate using Sensitive Data Protection, send a request\nto the following URL, where \u003cvar translate=\"no\"\u003ePROJECT_ID\u003c/var\u003e indicates your [project\nidentifier](https://cloud.google.com/resource-manager/docs/creating-managing-projects#identifying_projects): \n\n```\nhttps://dlp.googleapis.com/v2/projects/PROJECT_ID/dlpJobs\n```\n\nThe request contains a\n[`RiskAnalysisJobConfig`](/sensitive-data-protection/docs/reference/rest/v2/projects.dlpJobs/create#riskanalysisjobconfig)\nobject, which is composed of the following:\n\n- A\n [`PrivacyMetric`](/sensitive-data-protection/docs/reference/rest/v2/projects.dlpJobs#privacymetric)\n object. This is where you specify that you want to calculate *δ* -presence by\n specifying a\n [`DeltaPresenceEstimationConfig`](/sensitive-data-protection/docs/reference/rest/v2/projects.dlpJobs#deltapresenceestimationconfig)\n object containing the following:\n\n - `quasiIds[]`: Required. Fields\n ([`QuasiId`](/sensitive-data-protection/docs/reference/rest/v2/projects.dlpJobs#quasiid)\n objects) considered to be quasi-identifiers to scan and use to compute\n *δ*-presence. No two columns can have the same tag. These can be any of the\n following:\n\n - An [infoType](/sensitive-data-protection/docs/reference/rest/v2/InfoType): This causes Sensitive Data Protection to use the relevant public dataset as a statistical model of population, including US ZIP codes, region codes, ages, and genders.\n - A custom infoType: A custom tag wherein you indicate an auxiliary table (an [`AuxiliaryTable`](/sensitive-data-protection/docs/reference/rest/v2/projects.dlpJobs#DlpJob.AuxiliaryTable) object) that contains statistical information about the possible values of this column.\n - The `inferred` tag: If no semantic tag is indicated, specify `inferred`. Sensitive Data Protection infers the statistical model from the distribution of values in the input data.\n - `regionCode`: An\n [ISO 3166-1 alpha-2 region code](https://en.wikipedia.org/wiki/ISO_3166-1_alpha-2)\n for Sensitive Data Protection to use in statistical modeling. This value\n is required if no column is tagged with a region-specific infoType (for\n example, a US ZIP code) or a region code.\n\n - `auxiliaryTables[]`: Auxiliary tables\n ([`StatisticalTable`](/sensitive-data-protection/docs/reference/rest/v2/projects.dlpJobs#statisticaltable)\n objects) to use in the analysis. Each custom tag used to tag a\n quasi-identifier column (from `quasiIds[]`) must appear in exactly one\n column of one auxiliary table.\n\n- A [`BigQueryTable`](/sensitive-data-protection/docs/reference/rest/v2/BigQueryTable)\n object. Specify the BigQuery table to scan by including all of\n the following:\n\n - `projectId`: The project ID of the project containing the table.\n - `datasetId`: The dataset ID of the table.\n - `tableId`: The name of the table.\n- A set of one or more\n [`Action`](/sensitive-data-protection/docs/reference/rest/v2/InspectJobConfig#Action)\n objects, which represent actions to run, in the order given, at the\n completion of the job. Each `Action` object can contain one of the\n following actions:\n\n - [`SaveFindings`](/sensitive-data-protection/docs/reference/rest/v2/InspectJobConfig#SaveFindings) object: Saves the results of the risk analysis scan to a BigQuery table.\n - [`PublishToPubSub`](/sensitive-data-protection/docs/reference/rest/v2/InspectJobConfig#PublishToPubSub) object: [Publishes a notification to a Pub/Sub topic](/pubsub/docs/publisher).\n\n | **Note:** If there are configuration or permission issues with the Pub/Sub topic, Sensitive Data Protection retries sending the Pub/Sub notification for up to two weeks. After two weeks, the notification is discarded.\n - [`PublishSummaryToCscc`](/sensitive-data-protection/docs/reference/rest/v2/InspectJobConfig#PublishSummaryToCscc) object: Saves a results summary to Security Command Center.\n - [`PublishFindingsToCloudDataCatalog`](/sensitive-data-protection/docs/reference/rest/v2/InspectJobConfig#PublishFindingsToCloudDataCatalog) object: Saves results to [Data Catalog](/sensitive-data-protection/docs/sending-results-to-dc).\n - [`JobNotificationEmails`](/sensitive-data-protection/docs/reference/rest/v2/InspectJobConfig#JobNotificationEmails) object: Sends you an email with results.\n - [`PublishToStackdriver`](/sensitive-data-protection/docs/reference/rest/v2/InspectJobConfig#PublishToStackdriver) object: Saves results to Google Cloud Observability.\n\nViewing *δ*-presence job results\n--------------------------------\n\nTo retrieve the results of the *δ* -presence risk analysis job using the REST\nAPI, send the following GET request to the\n[`projects.dlpJobs`](/sensitive-data-protection/docs/reference/rest/v2/projects.dlpJobs/get)\nresource. Replace \u003cvar translate=\"no\"\u003ePROJECT_ID\u003c/var\u003e with your project ID and\n\u003cvar translate=\"no\"\u003eJOB_ID\u003c/var\u003e with the identifier of the job you want to obtain results for.\nThe job ID was returned when you started the job, and can also be retrieved by\n[listing all jobs](#list-jobs). \n\n```\nGET https://dlp.googleapis.com/v2/projects/PROJECT_ID/dlpJobs/JOB_ID\n```\n\nThe request returns a JSON object containing an instance of the job. The results\nof the analysis are inside the `\"riskDetails\"` key, in an\n[`AnalyzeDataSourceRiskDetails`](/sensitive-data-protection/docs/reference/rest/v2/projects.dlpJobs#DlpJob.AnalyzeDataSourceRiskDetails)\nobject. For more information, see the API reference for the\n[`DlpJob`](/sensitive-data-protection/docs/reference/rest/v2/projects.dlpJobs#DlpJob)\nresource.\n\nWhat's next\n-----------\n\n- Learn how to calculate the [*k*-anonymity](/sensitive-data-protection/docs/compute-k-anonymity) value for a dataset.\n- Learn how to calculate the [*l*-diversity](/sensitive-data-protection/docs/compute-l-diversity) value for a dataset.\n- Learn how to calculate the [*k*-map](/sensitive-data-protection/docs/compute-k-map) value for a dataset."]]