Organiza tus páginas con colecciones
Guarda y categoriza el contenido según tus preferencias.
Vertex AI Model Registry es un repositorio central en el que puedes administrar el ciclo de vida de los modelos de AA. En Model Registry, tienes una descripción general de tus modelos para que puedas organizar mejor, hacer un seguimiento y entrenar versiones nuevas. Cuando tengas una versión del modelo que desees implementar, puedes asignarla a un extremo directamente desde el registro o, si usas alias, implementar modelos en un extremo.
Vertex AI Model Registry es compatible con modelos personalizados y todos los tipos de datos de AutoML (texto, tabular, imagen y video). Model Registry también puede admitir modelos de BigQuery ML. Si tienes modelos entrenados en BigQuery ML, puedes registrarlos con Model Registry sin necesidad de exportarlos desde BigQuery ML ni importarlos al registro.
En la página de detalles de la versión del modelo, puedes evaluar, implementar en un extremo, configurar la predicción por lotes y ver detalles de modelos específicos. Vertex AI Model Registry proporciona una interfaz sencilla y optimizada para administrar e implementar tus mejores modelos en producción.
Flujo de trabajo común
Hay muchos flujos de trabajo válidos para trabajar en Model Registry.
Para comenzar, es posible que desees seguir estos lineamientos para comprender qué puedes hacer en el Model Registry y en cual etapa de tu recorrido de entrenamiento de modelos.
Importa modelos a Model Registry.
Crea modelos nuevos, asigna una versión del modelo al alias predeterminado y esté listo para la producción.
Agrega otros alias o etiquetas para ayudarte a administrar y organizar tus modelos y sus versiones.
Implementa tus modelos en un extremo para la predicción en línea.
Ejecuta la predicción por lotes y comienza la canalización de evaluación del modelo.
Consulta los detalles del modelo y las métricas de rendimiento desde la página de detalles del modelo.
Para obtener más información sobre cómo integrar tus modelos de BigQuery ML en Vertex AI, consulta la documentación de BigQuery ML.
Busca y descubre modelos con el servicio de Data Catalog de Dataplex
El servicio de Data Catalog de Dataplex es un servicio de administración de metadatos completamente administrado y escalable que proporciona una ubicación centralizada para buscar modelos en proyectos y regiones.
[[["Fácil de comprender","easyToUnderstand","thumb-up"],["Resolvió mi problema","solvedMyProblem","thumb-up"],["Otro","otherUp","thumb-up"]],[["Difícil de entender","hardToUnderstand","thumb-down"],["Información o código de muestra incorrectos","incorrectInformationOrSampleCode","thumb-down"],["Faltan la información o los ejemplos que necesito","missingTheInformationSamplesINeed","thumb-down"],["Problema de traducción","translationIssue","thumb-down"],["Otro","otherDown","thumb-down"]],["Última actualización: 2024-12-19 (UTC)"],[],[],null,["# Introduction to Vertex AI Model Registry\n\n| To see an example of getting started with Vertex AI Model Registry,\n| run the \"Get started with Vertex AI Model Registry\" notebook in one of the following\n| environments:\n|\n| [Open in Colab](https://colab.research.google.com/github/GoogleCloudPlatform/vertex-ai-samples/blob/main/notebooks/official/model_registry/get_started_with_model_registry.ipynb)\n|\n|\n| \\|\n|\n| [Open in Colab Enterprise](https://console.cloud.google.com/vertex-ai/colab/import/https%3A%2F%2Fraw.githubusercontent.com%2FGoogleCloudPlatform%2Fvertex-ai-samples%2Fmain%2Fnotebooks%2Fofficial%2Fmodel_registry%2Fget_started_with_model_registry.ipynb)\n|\n|\n| \\|\n|\n| [Open\n| in Vertex AI Workbench](https://console.cloud.google.com/vertex-ai/workbench/deploy-notebook?download_url=https%3A%2F%2Fraw.githubusercontent.com%2FGoogleCloudPlatform%2Fvertex-ai-samples%2Fmain%2Fnotebooks%2Fofficial%2Fmodel_registry%2Fget_started_with_model_registry.ipynb)\n|\n|\n| \\|\n|\n| [View on GitHub](https://github.com/GoogleCloudPlatform/vertex-ai-samples/blob/main/notebooks/official/model_registry/get_started_with_model_registry.ipynb)\n\nThe Vertex AI Model Registry is a central repository where you can manage\nthe lifecycle of your ML models. From the Model Registry,\nyou have an overview of your models so you can better organize, track,\nand train new versions. When you have a model version you would like to deploy,\nyou can assign it to an endpoint directly from the registry,\nor using aliases, deploy models to an endpoint.\n\nThe Vertex AI Model Registry supports custom models and all\nAutoML data types - tabular, image, and video. The\nModel Registry\ncan also support BigQuery ML models. If you have models trained in\nBigQuery ML, you can register them with the\nModel Registry without needing to export them from\nBigQuery ML or import them into the Model Registry.\n\nFrom the model version details page you can evaluate, deploy to an endpoint,\nset up batch inference, and view specific model details. The Vertex AI Model Registry\nprovides a straightforward and streamlined interface to manage and deploy your\nbest models to production.\n\nCommon workflow\n---------------\n\nThere are many valid workflows for working in the Model Registry.\nTo get started, you might want to follow these guidelines to understand what you can\ndo in the Model Registry and at what stage in your model-training journey.\n\n- Import models to the Model Registry.\n- Create new models, assign a model version the default alias, ready for production.\n- Add other aliases, or labels to help you manage and organize your models and model versions.\n- Deploy your models to an endpoint for online inference.\n- Run batch inference, and start your model evaluation pipeline.\n- View your model details and view performance metrics from the model details page.\n\nTo learn more about how to integrate your BigQuery ML models with\nVertex AI, see the\n[BigQuery ML documentation.](/bigquery-ml/docs/managing-models-vertex)\n\nSearch and discover models using Dataplex Universal Catalog\n-----------------------------------------------------------\n\nDataplex Universal Catalog is a platform for storing, managing, and accessing your\nmetadata. Dataplex Universal Catalog provides a way to search\nfor your Vertex AI models across projects and regions.\n\nFor more information, see [About data catalog management in\nDataplex Universal Catalog](/dataplex/docs/catalog-overview).\n\nWhat's next\n-----------\n\nTo get started using Vertex AI Model Registry, see:\n\n- [Import models to Vertex AI](/vertex-ai/docs/model-registry/import-model)\n- [Model versioning with Model Registry](/vertex-ai/docs/model-registry/versioning)\n- [How to use model version aliases](/vertex-ai/docs/model-registry/model-alias)\n- [BigQuery ML and Model Registry](/vertex-ai/docs/model-registry/model-registry-bqml)\n- [Copy a model in Vertex AI Model Registry](/vertex-ai/docs/model-registry/copy-model)"]]