Restez organisé à l'aide des collections
Enregistrez et classez les contenus selon vos préférences.
La ressource AutoML TrainingPipeline orchestre les tâches associées à l'entraînement d'un modèle AutoML. Cette ressource exécute toujours la tâche d'entraînement et peut éventuellement exporter des données à partir d'un Dataset Vertex AI qui devient l'entrée d'entraînement, importer le modèle dans Vertex AI et évaluer le modèle. Pour en savoir plus sur l'entraînement AutoML dans Vertex AI, consultez la documentation sur l'entraînement AutoML. Pour en savoir plus sur les composants du pipeline Google Cloud liés aux ensembles de données, consultez la page Composants d'un ensemble de données.
Le SDK des composants de pipeline Google Cloud inclut les opérateurs suivants liés aux modèles et aux workflows AutoML :
Sauf indication contraire, le contenu de cette page est régi par une licence Creative Commons Attribution 4.0, et les échantillons de code sont régis par une licence Apache 2.0. Pour en savoir plus, consultez les Règles du site Google Developers. Java est une marque déposée d'Oracle et/ou de ses sociétés affiliées.
Dernière mise à jour le 2024/11/22 (UTC).
[[["Facile à comprendre","easyToUnderstand","thumb-up"],["J'ai pu résoudre mon problème","solvedMyProblem","thumb-up"],["Autre","otherUp","thumb-up"]],[["Difficile à comprendre","hardToUnderstand","thumb-down"],["Informations ou exemple de code incorrects","incorrectInformationOrSampleCode","thumb-down"],["Il n'y a pas l'information/les exemples dont j'ai besoin","missingTheInformationSamplesINeed","thumb-down"],["Problème de traduction","translationIssue","thumb-down"],["Autre","otherDown","thumb-down"]],["Dernière mise à jour le 2024/11/22 (UTC)."],[],[],null,["# Vertex AI AutoML components\n\nThe AutoML `TrainingPipeline` resource orchestrates tasks associated\nwith training an AutoML model. This resource always executes the\ntraining task, and optionally may also export data from a Vertex AI\n`Dataset` which becomes the training input, upload the Model to\nVertex AI, and evaluate the Model. For information about\nAutoML training in Vertex AI, see the\n[AutoML training documentation](/vertex-ai/docs/training-overview#automl). For information\nabout Google Cloud Pipeline Components related to datasets, see\n[Dataset components](/vertex-ai/docs/pipelines/dataset-component).\n\nThe Google Cloud SDK includes the following operators related to\nAutoML models and workflows:\n\n**Operators related to AutoML forecasting**\n\n\n- [`ProphetTrainerOp`](https://google-cloud-pipeline-components.readthedocs.io/en/google-cloud-pipeline-components-2.19.0/api/v1/automl/forecasting.html#v1.automl.forecasting.ProphetTrainerOp)\n\n\u003cbr /\u003e\n\n**Operators related to AutoML Tabular models**\n\n\n- [`CvTrainerOp`](https://google-cloud-pipeline-components.readthedocs.io/en/google-cloud-pipeline-components-2.19.0/api/v1/automl/tabular.html#v1.automl.tabular.CvTrainerOp)\n- [`EnsembleOp`](https://google-cloud-pipeline-components.readthedocs.io/en/google-cloud-pipeline-components-2.19.0/api/v1/automl/tabular.html#v1.automl.tabular.EnsembleOp)\n- [`FinalizerOp`](https://google-cloud-pipeline-components.readthedocs.io/en/google-cloud-pipeline-components-2.19.0/api/v1/automl/tabular.html#v1.automl.tabular.FinalizerOp)\n- [`InfraValidatorOp`](https://google-cloud-pipeline-components.readthedocs.io/en/google-cloud-pipeline-components-2.19.0/api/v1/automl/tabular.html#v1.automl.tabular.InfraValidatorOp)\n- [`SplitMaterializedDataOp`](https://google-cloud-pipeline-components.readthedocs.io/en/google-cloud-pipeline-components-2.19.0/api/v1/automl/tabular.html#v1.automl.tabular.SplitMaterializedDataOp)\n- [`Stage1TunerOp`](https://google-cloud-pipeline-components.readthedocs.io/en/google-cloud-pipeline-components-2.19.0/api/v1/automl/tabular.html#v1.automl.tabular.Stage1TunerOp)\n- [`StatsAndExampleGenOp`](https://google-cloud-pipeline-components.readthedocs.io/en/google-cloud-pipeline-components-2.19.0/api/v1/automl/tabular.html#v1.automl.tabular.StatsAndExampleGenOp)\n- [`TrainingConfiguratorAndValidatorOp`](https://google-cloud-pipeline-components.readthedocs.io/en/google-cloud-pipeline-components-2.19.0/api/v1/automl/tabular.html#v1.automl.tabular.TrainingConfiguratorAndValidatorOp)\n- [`TransformOp`](https://google-cloud-pipeline-components.readthedocs.io/en/google-cloud-pipeline-components-2.19.0/api/v1/automl/tabular.html#v1.automl.tabular.TransformOp)\n\n\u003cbr /\u003e\n\n**Operators related to AutoML `model` resource creation**\n\n\n- [`AutoMLForecastingTrainingJobRunOp`](https://google-cloud-pipeline-components.readthedocs.io/en/google-cloud-pipeline-components-2.19.0/api/v1/automl/training_job.html#v1.automl.training_job.AutoMLForecastingTrainingJobRunOp)\n- [`AutoMLImageTrainingJobRunOp`](https://google-cloud-pipeline-components.readthedocs.io/en/google-cloud-pipeline-components-2.19.0/api/v1/automl/training_job.html#v1.automl.training_job.AutoMLImageTrainingJobRunOp)\n- [`AutoMLTabularTrainingJobRunOp`](https://google-cloud-pipeline-components.readthedocs.io/en/google-cloud-pipeline-components-2.19.0/api/v1/automl/training_job.html#v1.automl.training_job.AutoMLTabularTrainingJobRunOp)\n- [`AutoMLTextTrainingJobRunOp`](https://google-cloud-pipeline-components.readthedocs.io/en/google-cloud-pipeline-components-2.19.0/api/v1/automl/training_job.html#v1.automl.training_job.AutoMLTextTrainingJobRunOp)\n- [`AutoMLVideoTrainingJobRunOp`](https://google-cloud-pipeline-components.readthedocs.io/en/google-cloud-pipeline-components-2.19.0/api/v1/automl/training_job.html#v1.automl.training_jobAutoMLVideoTrainingJobRunOp)\n\n\u003cbr /\u003e\n\n[Learn more about training and using your own AutoML models](/vertex-ai/docs/training-overview#automl).\n\nAPI reference\n-------------\n\n- For AutoML component reference, see the\n [Google Cloud SDK reference for AutoML components](https://google-cloud-pipeline-components.readthedocs.io/en/google-cloud-pipeline-components-2.19.0/api/v1/automl/training_job.html).\n\n- For Vertex AI API reference, see the following API reference pages:\n\n - [`Dataset` resource](/vertex-ai/docs/reference/rest/v1/projects.locations.datasets)\n\n - [`TrainingPipeline` resource](/vertex-ai/docs/reference/rest/v1/projects.locations.trainingPipelines)\n\nTutorials\n---------\n\n- [Learn how to use the Google Cloud pipeline components to train an image classification model using Vertex AI AutoML.](https://github.com/GoogleCloudPlatform/vertex-ai-samples/blob/main/notebooks/official/pipelines/google_cloud_pipeline_components_automl_images.ipynb)\n- [Learn how to use the Google Cloud pipeline components to train a classification model using tabular data and Vertex AI AutoML.](https://github.com/GoogleCloudPlatform/vertex-ai-samples/blob/main/notebooks/official/pipelines/automl_tabular_classification_beans.ipynb)\n- [Learn how to use the Google Cloud pipeline components to train a linear regression model using tabular data and Vertex AI AutoML.](https://github.com/GoogleCloudPlatform/vertex-ai-samples/blob/main/notebooks/official/pipelines/google_cloud_pipeline_components_automl_tabular.ipynb)\n- [Learn how to use the Google Cloud pipeline components to train a text classification model using Vertex AI AutoML.](https://github.com/GoogleCloudPlatform/vertex-ai-samples/blob/main/notebooks/official/pipelines/google_cloud_pipeline_components_automl_text.ipynb)\n- [Learn how to use the Google Cloud pipeline components to upload and deploy a model.](https://github.com/GoogleCloudPlatform/vertex-ai-samples/blob/main/notebooks/official/pipelines/google_cloud_pipeline_components_model_train_upload_deploy.ipynb)\n\nVersion history and release notes\n---------------------------------\n\nTo learn more about the version history and changes to the Google Cloud Pipeline Components SDK, see the [Google Cloud Pipeline Components SDK Release Notes](https://google-cloud-pipeline-components.readthedocs.io/en/google-cloud-pipeline-components-2.19.0/release.html).\n\n### Technical support contacts\n\nIf you have any questions, reach out to\n[kubeflow-pipelines-components@google.com](mailto: kubeflow-pipelines-components@google.com)."]]