Interpreta i risultati delle previsioni dei modelli di classificazione del testo
Mantieni tutto organizzato con le raccolte
Salva e classifica i contenuti in base alle tue preferenze.
Se richiedi una previsione, Vertex AI restituisce i risultati in base all'obiettivo del modello. Le previsioni dei modelli di classificazione multi-etichetta restituiscono una o più etichette per ogni documento e un punteggio di affidabilità per ogni etichetta. Per i modelli di classificazione a singola etichetta, le previsioni restituiscono una sola etichetta e un solo punteggio di affidabilità per documento.
Il punteggio di confidenza indica quanto il modello associa ciascuna
classe o etichetta a un elemento di test. Più alto è il numero, maggiore è la certezza del modello che l'etichetta debba essere applicata a quell'elemento. Sei tu a decidere quanto deve essere alto il punteggio di affidabilità per accettare i risultati del modello.
Cursore della soglia di punteggio
Nella Google Cloud console, Vertex AI fornisce un cursore che viene utilizzato per regolare la soglia di confidenza per tutte le classi o le etichette o per una singola classe o etichetta. Il cursore è disponibile nella pagina dei dettagli di un modello nella scheda Valuta. La soglia di confidenza è il livello di confidenza che deve avere il modello per assegnare una classe o un'etichetta a un elemento di test. Man mano che aggiusti la soglia, puoi vedere come cambiano la precisione e il richiamo del modello. Soglie più alte in genere aumentano la precisione e riducono il richiamo.
Esempio di output di previsione batch
Il seguente esempio è il risultato previsto per un
modello di classificazione con più etichette. Il modello ha applicato le etichette GreatService, Suggestion e InfoRequest al documento inviato. I valori di confidenza si applicano a ogni
etichetta in ordine. In questo esempio, il modello ha previsto GreatService come etichetta più pertinente.
[[["Facile da capire","easyToUnderstand","thumb-up"],["Il problema è stato risolto","solvedMyProblem","thumb-up"],["Altra","otherUp","thumb-up"]],[["Difficile da capire","hardToUnderstand","thumb-down"],["Informazioni o codice di esempio errati","incorrectInformationOrSampleCode","thumb-down"],["Mancano le informazioni o gli esempi di cui ho bisogno","missingTheInformationSamplesINeed","thumb-down"],["Problema di traduzione","translationIssue","thumb-down"],["Altra","otherDown","thumb-down"]],["Ultimo aggiornamento 2025-09-02 UTC."],[],[],null,["# Interpret prediction results from text classification models\n\n| Starting on September 15, 2024, you can only customize classification, entity extraction, and sentiment analysis objectives by moving to Vertex AI Gemini prompts and tuning. Training or updating models for Vertex AI AutoML for Text classification, entity extraction, and sentiment analysis objectives will no longer be available. You can continue using existing Vertex AI AutoML Text models until June 15, 2025. For a comparison of AutoML text and Gemini, see [Gemini for AutoML text users](/vertex-ai/docs/start/automl-gemini-comparison). For more information about how Gemini offers enhanced user experience through improved prompting capabilities, see [Introduction to tuning](/vertex-ai/generative-ai/docs/models/tune-gemini-overview). To get started with tuning, see [Model tuning for Gemini text models](/vertex-ai/generative-ai/docs/models/tune_gemini/tune-gemini-learn)\n\nAfter requesting a prediction, Vertex AI returns results based on your\nmodel's objective. Predictions from multi-label classification models return one\nor more labels for each document and a confidence score for each label. For\nsingle-label classification models, predictions return only one label and\nconfidence score per document.\n\n\nThe confidence score communicates how strongly your model associates each\nclass or label with a test item. The higher the number, the higher the model's\nconfidence that the label should be applied to that item. You decide how high\nthe confidence score must be for you to accept the model's results.\n\n\u003cbr /\u003e\n\nScore threshold slider\n----------------------\n\n\nIn the Google Cloud console, Vertex AI provides a slider that's\nused to adjust the confidence threshold for all classes or labels, or an\nindividual class or label. The slider is available on a model's detail page in\nthe **Evaluate** tab. The confidence threshold is the confidence level that\nthe model must have for it to assign a class or label to a test item. As you\nadjust the threshold, you can see how your model's precision and recall\nchanges. Higher thresholds typically increase precision and lower recall.\n\n\u003cbr /\u003e\n\nExample batch prediction output\n-------------------------------\n\nThe following sample is the predicted result for a multi-label classification\nmodel. The model applied the `GreatService`, `Suggestion`, and `InfoRequest`\nlabels to the submitted document. The confidence values apply to each of the\nlabels in order. In this example, the model predicted `GreatService` as the most\nrelevant label.\n\n\n| **Note**: The following JSON Lines example includes line breaks for\n| readability. In your JSON Lines files, line breaks are included only after each\n| each JSON object.\n\n\u003cbr /\u003e\n\n\n```\n{\n \"instance\": {\"content\": \"gs://bucket/text.txt\", \"mimeType\": \"text/plain\"},\n \"predictions\": [\n {\n \"ids\": [\n \"1234567890123456789\",\n \"2234567890123456789\",\n \"3234567890123456789\"\n ],\n \"displayNames\": [\n \"GreatService\",\n \"Suggestion\",\n \"InfoRequest\"\n ],\n \"confidences\": [\n 0.8986392080783844,\n 0.81984345316886902,\n 0.7722353458404541\n ]\n }\n ]\n}\n```"]]