Interpréter les résultats des prédictions à partir de modèles d'analyse des sentiments d'après un texte
Restez organisé à l'aide des collections
Enregistrez et classez les contenus selon vos préférences.
Une fois que vous avez demandé une prédiction, Vertex AI renvoie les résultats en fonction de l'objectif du modèle. Les prédictions des modèles d'analyse des sentiments renvoient le sentiment général d'un document. Le sentiment est représenté par un entier compris entre 0 et le score de sentiment maximal du modèle qui peut être égal ou inférieur à 10. Le score de sentiment maximal d'un modèle est défini lors de l'entraînement. Par exemple, si un modèle a été entraîné sur un ensemble de données avec un score de sentiment maximal de 2, les scores de sentiment prédits peuvent être 0 (négatif), 1 (neutre) ou 2 (positif).
Exemple de résultat de prédiction par lot
L'exemple suivant est le résultat prédit pour un seul document. Comme le score de sentiment maximal du modèle est de 8, le sentiment prédit pour cet exemple est clairement positif.
Sauf indication contraire, le contenu de cette page est régi par une licence Creative Commons Attribution 4.0, et les échantillons de code sont régis par une licence Apache 2.0. Pour en savoir plus, consultez les Règles du site Google Developers. Java est une marque déposée d'Oracle et/ou de ses sociétés affiliées.
Dernière mise à jour le 2025/09/02 (UTC).
[[["Facile à comprendre","easyToUnderstand","thumb-up"],["J'ai pu résoudre mon problème","solvedMyProblem","thumb-up"],["Autre","otherUp","thumb-up"]],[["Difficile à comprendre","hardToUnderstand","thumb-down"],["Informations ou exemple de code incorrects","incorrectInformationOrSampleCode","thumb-down"],["Il n'y a pas l'information/les exemples dont j'ai besoin","missingTheInformationSamplesINeed","thumb-down"],["Problème de traduction","translationIssue","thumb-down"],["Autre","otherDown","thumb-down"]],["Dernière mise à jour le 2025/09/02 (UTC)."],[],[],null,["# Interpret prediction results from text sentiment analysis models\n\n| Starting on September 15, 2024, you can only customize classification, entity extraction, and sentiment analysis objectives by moving to Vertex AI Gemini prompts and tuning. Training or updating models for Vertex AI AutoML for Text classification, entity extraction, and sentiment analysis objectives will no longer be available. You can continue using existing Vertex AI AutoML Text models until June 15, 2025. For a comparison of AutoML text and Gemini, see [Gemini for AutoML text users](/vertex-ai/docs/start/automl-gemini-comparison). For more information about how Gemini offers enhanced user experience through improved prompting capabilities, see [Introduction to tuning](/vertex-ai/generative-ai/docs/models/tune-gemini-overview). To get started with tuning, see [Model tuning for Gemini text models](/vertex-ai/generative-ai/docs/models/tune_gemini/tune-gemini-learn)\n\nAfter requesting a prediction, Vertex AI returns results based on your\nmodel's objective. Predictions from sentiment analysis models return the overall\nsentiment for a document. The sentiment is represented by an integer from 0 to\nthe model's max sentiment score, which can be equal to or less than 10. The\nmaximum sentiment value for a model is set during training. For example, if a\nmodel was trained on a dataset with a maximum sentiment score of 2, predicted\nsentiment scores can be 0 (negative), 1 (neutral), or 2 (positive).\n\nExample batch prediction output\n-------------------------------\n\nThe following sample is the predicted result for a single document. Because the\nmodel's maximum sentiment score is 8, the predicted sentiment for this sample is\nclearly positive.\n\n\n| **Note**: The following JSON Lines example includes line breaks for\n| readability. In your JSON Lines files, line breaks are included only after each\n| each JSON object.\n\n\u003cbr /\u003e\n\n\n```\n{\n \"instance\": {\"content\": \"gs://bucket/text.txt\", \"mimeType\": \"text/plain\"},\n \"prediction\": {\"sentiment\": 8}\n}\n```"]]