Organiza tus páginas con colecciones
Guarda y categoriza el contenido según tus preferencias.
Puedes reiniciar cualquier recurso persistente que tenga el estado RUNNING o ERROR.
Reiniciar un recurso persistente te permite recuperarte de errores de los que el recurso persistente no puede recuperarse por sí solo. También puedes reiniciar un recurso persistente para obtener de forma manual más clústeres actualizados. En esta página, se muestra cómo reiniciar un recurso persistente mediante la consola de Google Cloud y la API de REST.
Selecciona una de las siguientes pestañas para obtener instrucciones sobre cómo reiniciar un recurso persistente. Asegúrate de que no haya trabajos de entrenamiento en ejecución en el recurso persistente.
Reiniciar un recurso persistente es una operación de larga duración, durante la cual el recurso persistente no se puede borrar. La operación contiene un campo progressMessage que se propaga con un estado de error, si se produce uno. Después de que la operación indique "done: true", verifica el estado del recurso persistente. Si el recurso persistente está en el estado RUNNING, el reinicio se realizó de forma correcta y está listo para ejecutar trabajos de entrenamiento.
Limitaciones
Las siguientes son limitaciones para reiniciar un recurso persistente:
En algunos casos, es posible perder la capacidad de los recursos pocos cuando se reinicia un recurso persistente. No se garantiza la retención completa de recursos.
El reinicio no está disponible en Ray en Vertex AI.
Los recursos persistentes que contienen grupos de trabajadores con ajuste de escala automático se reinician con el recuento mínimo de réplicas.
[[["Fácil de comprender","easyToUnderstand","thumb-up"],["Resolvió mi problema","solvedMyProblem","thumb-up"],["Otro","otherUp","thumb-up"]],[["Difícil de entender","hardToUnderstand","thumb-down"],["Información o código de muestra incorrectos","incorrectInformationOrSampleCode","thumb-down"],["Faltan la información o los ejemplos que necesito","missingTheInformationSamplesINeed","thumb-down"],["Problema de traducción","translationIssue","thumb-down"],["Otro","otherDown","thumb-down"]],["Última actualización: 2025-08-28 (UTC)"],[],[],null,["# Reboot a persistent resource\n\nYou can reboot any persistent resource that's in the `RUNNING` or `ERROR` state. Rebooting a persistent resource lets you recover from errors that the persistent resource can't recover from on its own. You can also reboot a persistent resource to manually obtain more up-to-date clusters. This page shows you how to reboot a persistent resource by using the Google Cloud console and the REST API.\n\n\u003cbr /\u003e\n\nRequired roles\n--------------\n\n\nTo get the permission that\nyou need to reboot a persistent resource,\n\nask your administrator to grant you the\n\n\n[Vertex AI Administrator](/iam/docs/roles-permissions/aiplatform#aiplatform.admin) (`roles/aiplatform.admin`)\nIAM role on your project.\n\n\nFor more information about granting roles, see [Manage access to projects, folders, and organizations](/iam/docs/granting-changing-revoking-access).\n\n\nThis predefined role contains the\n` aiplatform.persistentResources.update`\npermission,\nwhich is required to\nreboot a persistent resource.\n\n\nYou might also be able to get\nthis permission\nwith [custom roles](/iam/docs/creating-custom-roles) or\nother [predefined roles](/iam/docs/roles-overview#predefined).\n\nReboot a persistent resource\n----------------------------\n\nSelect one of the following tabs for instructions on how to reboot a persistent\nresource. Make sure there's no training jobs running on the persistent resource. \n\n### Console\n\nTo reboot a persistent resource in the Google Cloud console, do the following:\n\n1. In the Google Cloud console, go to the **Persistent resources** page.\n\n [Go to Persistent resources](https://console.cloud.google.com/vertex-ai/training/persistent-resources)\n2. Next to the name of the persistent resource that you want to reboot, click\n the vertical ellipses (more_vert).\n\n3. Click **Reboot**.\n\n4. Click **Confirm**.\n\n\n### gcloud\n\n\nBefore using any of the command data below,\nmake the following replacements:\n\n- \u003cvar class=\"edit\" scope=\"PROJECT_ID\" translate=\"no\"\u003ePROJECT_ID\u003c/var\u003e: The Project ID of the persistent resource that you want to reboot.\n- \u003cvar class=\"edit\" scope=\"LOCATION\" translate=\"no\"\u003eLOCATION\u003c/var\u003e: The region of the persistent resource that you want to reboot.\n- \u003cvar class=\"edit\" scope=\"PERSISTENT_RESOURCE_ID\" translate=\"no\"\u003ePERSISTENT_RESOURCE_ID\u003c/var\u003e: The ID of the persistent resource that you want to reboot.\n\n\nExecute the\n\nfollowing\n\ncommand:\n\n#### Linux, macOS, or Cloud Shell\n\n**Note:** Ensure you have initialized the Google Cloud CLI with authentication and a project by running either [gcloud init](/sdk/gcloud/reference/init); or [gcloud auth login](/sdk/gcloud/reference/auth/login) and [gcloud config set project](/sdk/gcloud/reference/config/set). \n\n```bash\ngcloud ai persistent-resources reboot PERSISTENT_RESOURCE_ID \\\n --project=PROJECT_ID \\\n --region=LOCATION\n```\n\n#### Windows (PowerShell)\n\n**Note:** Ensure you have initialized the Google Cloud CLI with authentication and a project by running either [gcloud init](/sdk/gcloud/reference/init); or [gcloud auth login](/sdk/gcloud/reference/auth/login) and [gcloud config set project](/sdk/gcloud/reference/config/set). \n\n```bash\ngcloud ai persistent-resources reboot PERSISTENT_RESOURCE_ID `\n --project=PROJECT_ID `\n --region=LOCATION\n```\n\n#### Windows (cmd.exe)\n\n**Note:** Ensure you have initialized the Google Cloud CLI with authentication and a project by running either [gcloud init](/sdk/gcloud/reference/init); or [gcloud auth login](/sdk/gcloud/reference/auth/login) and [gcloud config set project](/sdk/gcloud/reference/config/set). \n\n```bash\ngcloud ai persistent-resources reboot PERSISTENT_RESOURCE_ID ^\n --project=PROJECT_ID ^\n --region=LOCATION\n```\n\nYou should receive a response similar to the following:\n\n```\nUsing endpoint [https://us-central1-aiplatform.googleapis.com/]\nRequest to reboot the PersistentResource [projects/sample-project/locations/us-central1/persistentResources/test-persistent-resource] has been sent.\n\nYou may view the status of your persistent resource with the command\n\n $ gcloud ai persistent-resources describe projects/sample-project/locations/us-central1/persistentResources/test-persistent-resource\n```\n\n### REST\n\n\nBefore using any of the request data,\nmake the following replacements:\n\n- \u003cvar class=\"edit\" scope=\"PROJECT_ID\" translate=\"no\"\u003ePROJECT_ID\u003c/var\u003e: The Project ID of the persistent resource that you want to reboot.\n- \u003cvar class=\"edit\" scope=\"LOCATION\" translate=\"no\"\u003eLOCATION\u003c/var\u003e: The region of the persistent resource that you want to reboot.\n- \u003cvar class=\"edit\" scope=\"PERSISTENT_RESOURCE_ID\" translate=\"no\"\u003ePERSISTENT_RESOURCE_ID\u003c/var\u003e: The ID of the persistent resource that you want to reboot.\n\n\nHTTP method and URL:\n\n```\nPOST https://us-central1-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/persistentResources/PERSISTENT_RESOURCE_ID:reboot\n```\n\nTo send your request, expand one of these options:\n\n#### curl (Linux, macOS, or Cloud Shell)\n\n| **Note:** The following command assumes that you have logged in to the `gcloud` CLI with your user account by running [`gcloud init`](/sdk/gcloud/reference/init) or [`gcloud auth login`](/sdk/gcloud/reference/auth/login) , or by using [Cloud Shell](/shell/docs), which automatically logs you into the `gcloud` CLI . You can check the currently active account by running [`gcloud auth list`](/sdk/gcloud/reference/auth/list).\n\n\nExecute the following command:\n\n```\ncurl -X POST \\\n -H \"Authorization: Bearer $(gcloud auth print-access-token)\" \\\n -H \"Content-Type: application/json; charset=utf-8\" \\\n -d \"\" \\\n \"https://us-central1-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/persistentResources/PERSISTENT_RESOURCE_ID:reboot\"\n```\n\n#### PowerShell (Windows)\n\n| **Note:** The following command assumes that you have logged in to the `gcloud` CLI with your user account by running [`gcloud init`](/sdk/gcloud/reference/init) or [`gcloud auth login`](/sdk/gcloud/reference/auth/login) . You can check the currently active account by running [`gcloud auth list`](/sdk/gcloud/reference/auth/list).\n\n\nExecute the following command:\n\n```\n$cred = gcloud auth print-access-token\n$headers = @{ \"Authorization\" = \"Bearer $cred\" }\n\nInvoke-WebRequest `\n -Method POST `\n -Headers $headers `\n -Uri \"https://us-central1-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/persistentResources/PERSISTENT_RESOURCE_ID:reboot\" | Select-Object -Expand Content\n```\n\nYou should receive a JSON response similar to the following:\n\n```\nresponse: \n {\n \"name\": \"projects/123456789012/locations/us-central1/persistentResources/test-persistent-resource/operations/1234567890123456789\",\n \"metadata\": {\n \"@type\": \"type.googleapis.com/google.cloud.aiplatform.v1.RebootPersistentResourceOperationMetadata\",\n \"genericMetadata\": {\n \"createTime\": \"2024-03-18T17:31:54.955004Z\",\n \"updateTime\": \"2024-03-18T17:31:55.204817Z\",\n \"state\": \"RUNNING\",\n \"worksOn\": [\n \"projects/123456789012/locations/us-central1/persistentResources/test-persistent-resource\"\n ]\n },\n \"progressMessage\": \"Waiting for persistent resource shut down.\"\n }\n }\n```\n\n\u003cbr /\u003e\n\nRebooting a persistent resource is a\n[long running operation](/vertex-ai/docs/general/long-running-operations),\nduring which the persistent resource can't be deleted. The operation contains a\n`progressMessage` field that populates with an error status if one occurs. After\nthe operation indicates `\"done: true\"`,\n[check the status](/vertex-ai/docs/training/persistent-resource-get#get_information_about_a_persistent_resource)\nof the persistent resource. If the persistent resource is in the `RUNNING`\nstate, the reboot is successful and it's ready to run training jobs.\n\nLimitations\n-----------\n\nThe following are limitations for rebooting a persistent resource:\n\n- In some cases, it's possible to lose capacity of scarce resources when rebooting a persistent resource. Full resource retention is not guaranteed.\n- Reboot is not available on Ray on Vertex AI.\n- Persistent resources containing autoscaled worker pools reboot with the minimum replica count.\n\nWhat's next\n-----------\n\n- [Learn about persistent resource](/vertex-ai/docs/training/persistent-resource-overview).\n- [Create and use a persistent resource](/vertex-ai/docs/training/persistent-resource-create).\n- [Run training jobs on a persistent resource](/vertex-ai/docs/training/persistent-resource-train).\n- [Get information about a persistent resource](/vertex-ai/docs/training/persistent-resource-get).\n- [Delete a persistent resource](/vertex-ai/docs/training/persistent-resource-delete)."]]