Reconocer texto

La detección de texto aplica el reconocimiento óptico de caracteres (OCR), que detecta y extrae texto de un vídeo de entrada.

La detección de texto está disponible en todos los idiomas compatibles con la API Cloud Vision.

Solicitar la detección de texto en un vídeo de Cloud Storage

En los siguientes ejemplos se muestra cómo detectar texto en un archivo ubicado en Cloud Storage.

REST

Enviar solicitud de anotación de vídeo

A continuación, se muestra cómo enviar una solicitud POST al método videos:annotate. En el ejemplo se usa Google Cloud CLI para crear un token de acceso. Para obtener instrucciones sobre cómo instalar gcloud CLI, consulta la guía de inicio rápido de la API Video Intelligence.

Antes de usar los datos de la solicitud, haz las siguientes sustituciones:

  • INPUT_URI: un segmento de Cloud Storage que contiene el archivo que quieres anotar, incluido el nombre del archivo. Debe empezar por gs://.
    Por ejemplo: "inputUri": "gs://cloud-videointelligence-demo/assistant.mp4",
  • LANGUAGE_CODE: [Opcional] Por ejemplo, "es-ES"
  • PROJECT_NUMBER: identificador numérico de tu Google Cloud proyecto

Método HTTP y URL:

POST https://videointelligence.googleapis.com/v1/videos:annotate

Cuerpo JSON de la solicitud:

{
  "inputUri": "INPUT_URI",
  "features": ["TEXT_DETECTION"],
  "videoContext": {
    "textDetectionConfig": {
      "languageHints": ["LANGUAGE_CODE"]
    }
  }
}

Para enviar tu solicitud, despliega una de estas opciones:

Deberías recibir una respuesta JSON similar a la siguiente:

{
  "name": "projects/PROJECT_NUMBER/locations/LOCATION_ID/operations/OPERATION_ID"
}

Si la respuesta es correcta, la API Video Intelligence devuelve el name de tu operación. En el ejemplo anterior se muestra una respuesta de este tipo, donde project-number es el número de tu proyecto y operation-id es el ID de la operación de larga duración creada para la solicitud.

  • PROJECT_NUMBER: el número de tu proyecto
  • LOCATION_ID: la región de Cloud en la que se debe realizar la anotación. Las regiones de nube admitidas son us-east1, us-west1, europe-west1 y asia-east1. Si no se especifica ninguna región, se determinará una en función de la ubicación del archivo de vídeo.
  • OPERATION_ID: el ID de la operación de larga duración creada para la solicitud y proporcionada en la respuesta cuando iniciaste la operación. Por ejemplo, 12345....

Obtener resultados de anotación

Para obtener el resultado de la operación, haz una solicitud GET con el nombre de la operación devuelto por la llamada a videos:annotate, como se muestra en el siguiente ejemplo.

Antes de usar los datos de la solicitud, haz las siguientes sustituciones:

  • OPERATION_NAME: el nombre de la operación tal como lo devuelve la API Video Intelligence. El nombre de la operación tiene el formato projects/PROJECT_NUMBER/locations/LOCATION_ID/operations/OPERATION_ID
  • PROJECT_NUMBER: identificador numérico de tu Google Cloud proyecto

Método HTTP y URL:

GET https://videointelligence.googleapis.com/v1/OPERATION_NAME

Para enviar tu solicitud, despliega una de estas opciones:

Deberías recibir una respuesta JSON similar a la siguiente:

Las anotaciones de detección de texto se devuelven como una lista textAnnotations. Nota: El campo done solo se devuelve cuando su valor es True. No se incluye en las respuestas de las operaciones que no se han completado.

Descargar resultados de anotación

Copia la anotación del segmento de origen al de destino (consulta Copiar archivos y objetos).

gcloud storage cp gcs_uri gs://my-bucket

Nota: Si el usuario proporciona el URI de GCS de salida, la anotación se almacenará en ese URI.

Go


import (
	"context"
	"fmt"
	"io"

	video "cloud.google.com/go/videointelligence/apiv1"
	videopb "cloud.google.com/go/videointelligence/apiv1/videointelligencepb"
	"github.com/golang/protobuf/ptypes"
)

// textDetectionGCS analyzes a video and extracts the text from the video's audio.
func textDetectionGCS(w io.Writer, gcsURI string) error {
	// gcsURI := "gs://python-docs-samples-tests/video/googlework_short.mp4"

	ctx := context.Background()

	// Creates a client.
	client, err := video.NewClient(ctx)
	if err != nil {
		return fmt.Errorf("video.NewClient: %w", err)
	}
	defer client.Close()

	op, err := client.AnnotateVideo(ctx, &videopb.AnnotateVideoRequest{
		InputUri: gcsURI,
		Features: []videopb.Feature{
			videopb.Feature_TEXT_DETECTION,
		},
	})
	if err != nil {
		return fmt.Errorf("AnnotateVideo: %w", err)
	}

	resp, err := op.Wait(ctx)
	if err != nil {
		return fmt.Errorf("Wait: %w", err)
	}

	// Only one video was processed, so get the first result.
	result := resp.GetAnnotationResults()[0]

	for _, annotation := range result.TextAnnotations {
		fmt.Fprintf(w, "Text: %q\n", annotation.GetText())

		// Get the first text segment.
		segment := annotation.GetSegments()[0]
		start, _ := ptypes.Duration(segment.GetSegment().GetStartTimeOffset())
		end, _ := ptypes.Duration(segment.GetSegment().GetEndTimeOffset())
		fmt.Fprintf(w, "\tSegment: %v to %v\n", start, end)

		fmt.Fprintf(w, "\tConfidence: %f\n", segment.GetConfidence())

		// Show the result for the first frame in this segment.
		frame := segment.GetFrames()[0]
		seconds := float32(frame.GetTimeOffset().GetSeconds())
		nanos := float32(frame.GetTimeOffset().GetNanos())
		fmt.Fprintf(w, "\tTime offset of the first frame: %fs\n", seconds+nanos/1e9)

		fmt.Fprintf(w, "\tRotated bounding box vertices:\n")
		for _, vertex := range frame.GetRotatedBoundingBox().GetVertices() {
			fmt.Fprintf(w, "\t\tVertex x=%f, y=%f\n", vertex.GetX(), vertex.GetY())
		}
	}

	return nil
}

Java

Para autenticarte en Video Intelligence, configura las credenciales predeterminadas de la aplicación. Para obtener más información, consulta el artículo Configurar la autenticación en un entorno de desarrollo local.

/**
 * Detect Text in a video.
 *
 * @param gcsUri the path to the video file to analyze.
 */
public static VideoAnnotationResults detectTextGcs(String gcsUri) throws Exception {
  try (VideoIntelligenceServiceClient client = VideoIntelligenceServiceClient.create()) {
    // Create the request
    AnnotateVideoRequest request =
        AnnotateVideoRequest.newBuilder()
            .setInputUri(gcsUri)
            .addFeatures(Feature.TEXT_DETECTION)
            .build();

    // asynchronously perform object tracking on videos
    OperationFuture<AnnotateVideoResponse, AnnotateVideoProgress> future =
        client.annotateVideoAsync(request);

    System.out.println("Waiting for operation to complete...");
    // The first result is retrieved because a single video was processed.
    AnnotateVideoResponse response = future.get(300, TimeUnit.SECONDS);
    VideoAnnotationResults results = response.getAnnotationResults(0);

    // Get only the first annotation for demo purposes.
    TextAnnotation annotation = results.getTextAnnotations(0);
    System.out.println("Text: " + annotation.getText());

    // Get the first text segment.
    TextSegment textSegment = annotation.getSegments(0);
    System.out.println("Confidence: " + textSegment.getConfidence());
    // For the text segment display it's time offset
    VideoSegment videoSegment = textSegment.getSegment();
    Duration startTimeOffset = videoSegment.getStartTimeOffset();
    Duration endTimeOffset = videoSegment.getEndTimeOffset();
    // Display the offset times in seconds, 1e9 is part of the formula to convert nanos to seconds
    System.out.println(
        String.format(
            "Start time: %.2f", startTimeOffset.getSeconds() + startTimeOffset.getNanos() / 1e9));
    System.out.println(
        String.format(
            "End time: %.2f", endTimeOffset.getSeconds() + endTimeOffset.getNanos() / 1e9));

    // Show the first result for the first frame in the segment.
    TextFrame textFrame = textSegment.getFrames(0);
    Duration timeOffset = textFrame.getTimeOffset();
    System.out.println(
        String.format(
            "Time offset for the first frame: %.2f",
            timeOffset.getSeconds() + timeOffset.getNanos() / 1e9));

    // Display the rotated bounding box for where the text is on the frame.
    System.out.println("Rotated Bounding Box Vertices:");
    List<NormalizedVertex> vertices = textFrame.getRotatedBoundingBox().getVerticesList();
    for (NormalizedVertex normalizedVertex : vertices) {
      System.out.println(
          String.format(
              "\tVertex.x: %.2f, Vertex.y: %.2f",
              normalizedVertex.getX(), normalizedVertex.getY()));
    }
    return results;
  }
}

Node.js

Para autenticarte en Video Intelligence, configura las credenciales predeterminadas de la aplicación. Para obtener más información, consulta el artículo Configurar la autenticación en un entorno de desarrollo local.

// Imports the Google Cloud Video Intelligence library
const Video = require('@google-cloud/video-intelligence');
// Creates a client
const video = new Video.VideoIntelligenceServiceClient();

/**
 * TODO(developer): Uncomment the following line before running the sample.
 */
// const gcsUri = 'GCS URI of the video to analyze, e.g. gs://my-bucket/my-video.mp4';

const request = {
  inputUri: gcsUri,
  features: ['TEXT_DETECTION'],
};
// Detects text in a video
const [operation] = await video.annotateVideo(request);
const results = await operation.promise();
console.log('Waiting for operation to complete...');
// Gets annotations for video
const textAnnotations = results[0].annotationResults[0].textAnnotations;
textAnnotations.forEach(textAnnotation => {
  console.log(`Text ${textAnnotation.text} occurs at:`);
  textAnnotation.segments.forEach(segment => {
    const time = segment.segment;
    console.log(
      ` Start: ${time.startTimeOffset.seconds || 0}.${(
        time.startTimeOffset.nanos / 1e6
      ).toFixed(0)}s`
    );
    console.log(
      ` End: ${time.endTimeOffset.seconds || 0}.${(
        time.endTimeOffset.nanos / 1e6
      ).toFixed(0)}s`
    );
    console.log(` Confidence: ${segment.confidence}`);
    segment.frames.forEach(frame => {
      const timeOffset = frame.timeOffset;
      console.log(
        `Time offset for the frame: ${timeOffset.seconds || 0}` +
          `.${(timeOffset.nanos / 1e6).toFixed(0)}s`
      );
      console.log('Rotated Bounding Box Vertices:');
      frame.rotatedBoundingBox.vertices.forEach(vertex => {
        console.log(`Vertex.x:${vertex.x}, Vertex.y:${vertex.y}`);
      });
    });
  });
});

Python

Para autenticarte en Video Intelligence, configura las credenciales predeterminadas de la aplicación. Para obtener más información, consulta el artículo Configurar la autenticación en un entorno de desarrollo local.

"""Detect text in a video stored on GCS."""
from google.cloud import videointelligence

video_client = videointelligence.VideoIntelligenceServiceClient()
features = [videointelligence.Feature.TEXT_DETECTION]

operation = video_client.annotate_video(
    request={"features": features, "input_uri": input_uri}
)

print("\nProcessing video for text detection.")
result = operation.result(timeout=600)

# The first result is retrieved because a single video was processed.
annotation_result = result.annotation_results[0]

for text_annotation in annotation_result.text_annotations:
    print("\nText: {}".format(text_annotation.text))

    # Get the first text segment
    text_segment = text_annotation.segments[0]
    start_time = text_segment.segment.start_time_offset
    end_time = text_segment.segment.end_time_offset
    print(
        "start_time: {}, end_time: {}".format(
            start_time.seconds + start_time.microseconds * 1e-6,
            end_time.seconds + end_time.microseconds * 1e-6,
        )
    )

    print("Confidence: {}".format(text_segment.confidence))

    # Show the result for the first frame in this segment.
    frame = text_segment.frames[0]
    time_offset = frame.time_offset
    print(
        "Time offset for the first frame: {}".format(
            time_offset.seconds + time_offset.microseconds * 1e-6
        )
    )
    print("Rotated Bounding Box Vertices:")
    for vertex in frame.rotated_bounding_box.vertices:
        print("\tVertex.x: {}, Vertex.y: {}".format(vertex.x, vertex.y))

Idiomas adicionales

C#: Sigue las instrucciones de configuración de C# en la página de bibliotecas de cliente y, a continuación, consulta la documentación de referencia de Video Intelligence para .NET.

PHP Sigue las instrucciones de configuración de PHP en la página de bibliotecas de cliente y, a continuación, consulta la documentación de referencia de Video Intelligence para PHP.

Ruby: Sigue las instrucciones de configuración de Ruby en la página de bibliotecas de cliente y, a continuación, consulta la documentación de referencia de Video Intelligence para Ruby.

Solicitar la detección de texto en un vídeo de un archivo local

En los siguientes ejemplos se muestra cómo detectar texto en un archivo almacenado de forma local.

REST

Enviar solicitud de anotación de vídeo

Para anotar un archivo de vídeo local, asegúrate de codificar en base64 el contenido del archivo de vídeo. Incluye el contenido codificado en base64 en el campo inputContent de la solicitud. Para obtener información sobre cómo codificar en Base64 el contenido de un archivo de vídeo, consulta Codificación Base64.

A continuación, se muestra cómo enviar una solicitud POST al método videos:annotate. En el ejemplo se usa Google Cloud CLI para crear un token de acceso. Para obtener instrucciones sobre cómo instalar Google Cloud CLI, consulta la guía de inicio rápido de la API Video Intelligence.

Antes de usar los datos de la solicitud, haz las siguientes sustituciones:

  • "inputContent": BASE64_ENCODED_CONTENT
    Por ejemplo:
    "UklGRg41AwBBVkkgTElTVAwBAABoZHJsYXZpaDgAAAA1ggAAxPMBAAAAAAAQCAA..."
  • LANGUAGE_CODE: [Opcional] Por ejemplo, "es-ES"
  • PROJECT_NUMBER: identificador numérico de tu Google Cloud proyecto

Método HTTP y URL:

POST https://videointelligence.googleapis.com/v1/videos:annotate

Cuerpo JSON de la solicitud:

{
  "inputContent": "BASE64_ENCODED_CONTENT",
  "features": ["TEXT_DETECTION"],
  "videoContext": {
    "textDetectionConfig": {
      "languageHints": ["LANGUAGE_CODE"]
    }
  }
}

Para enviar tu solicitud, despliega una de estas opciones:

Deberías recibir una respuesta JSON similar a la siguiente:

{
  "name": "projects/PROJECT_NUMBER/locations/LOCATION_ID/operations/OPERATION_ID"
}

Si la respuesta es correcta, la API Video Intelligence devuelve el name de tu operación. En el ejemplo anterior se muestra una respuesta de este tipo, donde project-number es el nombre de tu proyecto y operation-id es el ID de la operación de larga duración creada para la solicitud.

  • OPERATION_ID: se proporciona en la respuesta cuando iniciaste la operación, por ejemplo, 12345...

Obtener resultados de anotación

Para obtener el resultado de la operación, haz una solicitud GET con el nombre de la operación devuelto por la llamada a videos:annotate, como se muestra en el siguiente ejemplo.

Antes de usar los datos de la solicitud, haz las siguientes sustituciones:

  • PROJECT_NUMBER: identificador numérico de tu Google Cloud proyecto

Método HTTP y URL:

GET https://videointelligence.googleapis.com/v1/OPERATION_NAME

Para enviar tu solicitud, despliega una de estas opciones:

Deberías recibir una respuesta JSON similar a la siguiente:

Las anotaciones de detección de texto se devuelven como una lista textAnnotations. Nota: El campo done solo se devuelve cuando su valor es True. No se incluye en las respuestas de las operaciones que no se han completado.

Go


import (
	"context"
	"fmt"
	"io"
	"os"

	video "cloud.google.com/go/videointelligence/apiv1"
	videopb "cloud.google.com/go/videointelligence/apiv1/videointelligencepb"
	"github.com/golang/protobuf/ptypes"
)

// textDetection analyzes a video and extracts the text from the video's audio.
func textDetection(w io.Writer, filename string) error {
	// filename := "../testdata/googlework_short.mp4"

	ctx := context.Background()

	// Creates a client.
	client, err := video.NewClient(ctx)
	if err != nil {
		return fmt.Errorf("video.NewClient: %w", err)
	}
	defer client.Close()

	fileBytes, err := os.ReadFile(filename)
	if err != nil {
		return fmt.Errorf("os.ReadFile: %w", err)
	}

	op, err := client.AnnotateVideo(ctx, &videopb.AnnotateVideoRequest{
		InputContent: fileBytes,
		Features: []videopb.Feature{
			videopb.Feature_TEXT_DETECTION,
		},
	})
	if err != nil {
		return fmt.Errorf("AnnotateVideo: %w", err)
	}

	resp, err := op.Wait(ctx)
	if err != nil {
		return fmt.Errorf("Wait: %w", err)
	}

	// Only one video was processed, so get the first result.
	result := resp.GetAnnotationResults()[0]

	for _, annotation := range result.TextAnnotations {
		fmt.Fprintf(w, "Text: %q\n", annotation.GetText())

		// Get the first text segment.
		segment := annotation.GetSegments()[0]
		start, _ := ptypes.Duration(segment.GetSegment().GetStartTimeOffset())
		end, _ := ptypes.Duration(segment.GetSegment().GetEndTimeOffset())
		fmt.Fprintf(w, "\tSegment: %v to %v\n", start, end)

		fmt.Fprintf(w, "\tConfidence: %f\n", segment.GetConfidence())

		// Show the result for the first frame in this segment.
		frame := segment.GetFrames()[0]
		seconds := float32(frame.GetTimeOffset().GetSeconds())
		nanos := float32(frame.GetTimeOffset().GetNanos())
		fmt.Fprintf(w, "\tTime offset of the first frame: %fs\n", seconds+nanos/1e9)

		fmt.Fprintf(w, "\tRotated bounding box vertices:\n")
		for _, vertex := range frame.GetRotatedBoundingBox().GetVertices() {
			fmt.Fprintf(w, "\t\tVertex x=%f, y=%f\n", vertex.GetX(), vertex.GetY())
		}
	}

	return nil
}

Java

/**
 * Detect text in a video.
 *
 * @param filePath the path to the video file to analyze.
 */
public static VideoAnnotationResults detectText(String filePath) throws Exception {
  try (VideoIntelligenceServiceClient client = VideoIntelligenceServiceClient.create()) {
    // Read file
    Path path = Paths.get(filePath);
    byte[] data = Files.readAllBytes(path);

    // Create the request
    AnnotateVideoRequest request =
        AnnotateVideoRequest.newBuilder()
            .setInputContent(ByteString.copyFrom(data))
            .addFeatures(Feature.TEXT_DETECTION)
            .build();

    // asynchronously perform object tracking on videos
    OperationFuture<AnnotateVideoResponse, AnnotateVideoProgress> future =
        client.annotateVideoAsync(request);

    System.out.println("Waiting for operation to complete...");
    // The first result is retrieved because a single video was processed.
    AnnotateVideoResponse response = future.get(300, TimeUnit.SECONDS);
    VideoAnnotationResults results = response.getAnnotationResults(0);

    // Get only the first annotation for demo purposes.
    TextAnnotation annotation = results.getTextAnnotations(0);
    System.out.println("Text: " + annotation.getText());

    // Get the first text segment.
    TextSegment textSegment = annotation.getSegments(0);
    System.out.println("Confidence: " + textSegment.getConfidence());
    // For the text segment display it's time offset
    VideoSegment videoSegment = textSegment.getSegment();
    Duration startTimeOffset = videoSegment.getStartTimeOffset();
    Duration endTimeOffset = videoSegment.getEndTimeOffset();
    // Display the offset times in seconds, 1e9 is part of the formula to convert nanos to seconds
    System.out.println(
        String.format(
            "Start time: %.2f", startTimeOffset.getSeconds() + startTimeOffset.getNanos() / 1e9));
    System.out.println(
        String.format(
            "End time: %.2f", endTimeOffset.getSeconds() + endTimeOffset.getNanos() / 1e9));

    // Show the first result for the first frame in the segment.
    TextFrame textFrame = textSegment.getFrames(0);
    Duration timeOffset = textFrame.getTimeOffset();
    System.out.println(
        String.format(
            "Time offset for the first frame: %.2f",
            timeOffset.getSeconds() + timeOffset.getNanos() / 1e9));

    // Display the rotated bounding box for where the text is on the frame.
    System.out.println("Rotated Bounding Box Vertices:");
    List<NormalizedVertex> vertices = textFrame.getRotatedBoundingBox().getVerticesList();
    for (NormalizedVertex normalizedVertex : vertices) {
      System.out.println(
          String.format(
              "\tVertex.x: %.2f, Vertex.y: %.2f",
              normalizedVertex.getX(), normalizedVertex.getY()));
    }
    return results;
  }
}

Node.js

Para autenticarte en Video Intelligence, configura las credenciales predeterminadas de la aplicación. Para obtener más información, consulta el artículo Configurar la autenticación en un entorno de desarrollo local.

// Imports the Google Cloud Video Intelligence library + Node's fs library
const Video = require('@google-cloud/video-intelligence');
const fs = require('fs');
const util = require('util');
// Creates a client
const video = new Video.VideoIntelligenceServiceClient();

/**
 * TODO(developer): Uncomment the following line before running the sample.
 */
// const path = 'Local file to analyze, e.g. ./my-file.mp4';

// Reads a local video file and converts it to base64
const file = await util.promisify(fs.readFile)(path);
const inputContent = file.toString('base64');

const request = {
  inputContent: inputContent,
  features: ['TEXT_DETECTION'],
};
// Detects text in a video
const [operation] = await video.annotateVideo(request);
const results = await operation.promise();
console.log('Waiting for operation to complete...');

// Gets annotations for video
const textAnnotations = results[0].annotationResults[0].textAnnotations;
textAnnotations.forEach(textAnnotation => {
  console.log(`Text ${textAnnotation.text} occurs at:`);
  textAnnotation.segments.forEach(segment => {
    const time = segment.segment;
    if (time.startTimeOffset.seconds === undefined) {
      time.startTimeOffset.seconds = 0;
    }
    if (time.startTimeOffset.nanos === undefined) {
      time.startTimeOffset.nanos = 0;
    }
    if (time.endTimeOffset.seconds === undefined) {
      time.endTimeOffset.seconds = 0;
    }
    if (time.endTimeOffset.nanos === undefined) {
      time.endTimeOffset.nanos = 0;
    }
    console.log(
      `\tStart: ${time.startTimeOffset.seconds || 0}` +
        `.${(time.startTimeOffset.nanos / 1e6).toFixed(0)}s`
    );
    console.log(
      `\tEnd: ${time.endTimeOffset.seconds || 0}.` +
        `${(time.endTimeOffset.nanos / 1e6).toFixed(0)}s`
    );
    console.log(`\tConfidence: ${segment.confidence}`);
    segment.frames.forEach(frame => {
      const timeOffset = frame.timeOffset;
      console.log(
        `Time offset for the frame: ${timeOffset.seconds || 0}` +
          `.${(timeOffset.nanos / 1e6).toFixed(0)}s`
      );
      console.log('Rotated Bounding Box Vertices:');
      frame.rotatedBoundingBox.vertices.forEach(vertex => {
        console.log(`Vertex.x:${vertex.x}, Vertex.y:${vertex.y}`);
      });
    });
  });
});

Python

import io

from google.cloud import videointelligence

def video_detect_text(path):
    """Detect text in a local video."""
    video_client = videointelligence.VideoIntelligenceServiceClient()
    features = [videointelligence.Feature.TEXT_DETECTION]
    video_context = videointelligence.VideoContext()

    with io.open(path, "rb") as file:
        input_content = file.read()

    operation = video_client.annotate_video(
        request={
            "features": features,
            "input_content": input_content,
            "video_context": video_context,
        }
    )

    print("\nProcessing video for text detection.")
    result = operation.result(timeout=300)

    # The first result is retrieved because a single video was processed.
    annotation_result = result.annotation_results[0]

    for text_annotation in annotation_result.text_annotations:
        print("\nText: {}".format(text_annotation.text))

        # Get the first text segment
        text_segment = text_annotation.segments[0]
        start_time = text_segment.segment.start_time_offset
        end_time = text_segment.segment.end_time_offset
        print(
            "start_time: {}, end_time: {}".format(
                start_time.seconds + start_time.microseconds * 1e-6,
                end_time.seconds + end_time.microseconds * 1e-6,
            )
        )

        print("Confidence: {}".format(text_segment.confidence))

        # Show the result for the first frame in this segment.
        frame = text_segment.frames[0]
        time_offset = frame.time_offset
        print(
            "Time offset for the first frame: {}".format(
                time_offset.seconds + time_offset.microseconds * 1e-6
            )
        )
        print("Rotated Bounding Box Vertices:")
        for vertex in frame.rotated_bounding_box.vertices:
            print("\tVertex.x: {}, Vertex.y: {}".format(vertex.x, vertex.y))

Idiomas adicionales

C#: Sigue las instrucciones de configuración de C# en la página de bibliotecas de cliente y, a continuación, consulta la documentación de referencia de Video Intelligence para .NET.

PHP Sigue las instrucciones de configuración de PHP en la página de bibliotecas de cliente y, a continuación, consulta la documentación de referencia de Video Intelligence para PHP.

Ruby: Sigue las instrucciones de configuración de Ruby en la página de bibliotecas de cliente y, a continuación, consulta la documentación de referencia de Video Intelligence para Ruby.