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Introduction

Dirichlet process mixture models:

e Clustering applications:

— natural language processing, e.g. [Blei, et. al, 2004;
Daume, Marcu, 2005; Goldwater, et. al, 2006; Liang,
et. al, 2007]

— vision, e.g. [Sudderth, et. al, 2006]

— bioinformatics, e.g. [Xing, et. al, 2004]
e Nonparametric: number of clusters adapts to data
e Current inference based on local moves
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Dirichlet process mixture models:

e Clustering applications:

— natural language processing, e.g. [Blei, et. al, 2004;
Daume, Marcu, 2005; Goldwater, et. al, 2006; Liang,
et. al, 2007]

— vision, e.g. [Sudderth, et. al, 2006]
— bioinformatics, e.g. [Xing, et. al, 2004]
e Nonparametric: number of clusters adapts to data
e Current inference based on local moves
Outline:
e DP mixture model
e Permutation-augmented model = global moves
e Experiments
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G ~J DP(Oéo, Go)

@ For each data point 2 =1,...,n:

n

Definition: Gy = a distribution on ©, oy = concentration parameter.

GG is a draw from a Dirichlet process, denoted G ~ DP(ay, Go)
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Inference

Representations:
e Chinese restaurant process: marginalize GG
e Stick-breaking representation: explicitly represent G

Previous algorithms:
e Collapsed Gibbs sampling [Escobar, West, 1995]
e Blocked Gibbs sampling [Ishwaran, James, 2001]
e Split-merge sampling [Jain, Neal, 2000; Dahl, 2003]
e Variational [Blei, Jordan, 2005; Kurihara, et. al, 2007]
e A-star search [Daume, 2007]
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Chinese restaurant process

G ~ DP(aq, Gp) is discrete (with probability 1)
Marginalize out G = induces clustering C
Each cluster ¢ € C is a subset of {1,...,n}

Example: C = {{1},{2,3,5},{4}}
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[Antoniak, 1974]

CRP prior over clusterings

o 7)) 1 7)) 2
O+apg 149 24ag 3+ag 4+ap

Previous example: p(C) =

In general:

p(C) = AF% ] co(le] = 1)1

CEC
AF (g, n) = aglag+1)---(ag+n — 1) is ascending factorial

Key: p(C) decomposes over clusters ¢



DP mixture model via the CRP

& =@




DP mixture model via the CRP

Each cluster (table) ¢ has a dish 6.
Data points (customers) generated i.i.d. given dish.

Assuming conjugacy, we can marginalize out 6.
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DP mixture model via the CRP

Each cluster (table) ¢ has a dish 6.
Data points (customers) generated i.i.d. given dish.

Assuming conjugacy, we can marginalize out 6.

@ p(C) = A]: (oo Hag lc| —1)!

@ p(x | C) = H/HF:I}Z, )Go(dO)
@ ceC i€c —

n —p(xc)

Key: p(C) and p(x | C) decompose over clusters ¢
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Posterior inference

Goal: compute p(C | x)

e Exact inference: sum over exponential number of
clusterings

e Collapsed Gibbs sampler: change C one assignment at
a time
e Split-merge sampler: change C two clusters at a time

e Permutation-augmented sampler: can change all of C



Collapsed Gibbs can get stuck in

Local optima
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Augmenting with a permutation

Sampler: alternate between sampling C and 7

Why augment? {{1},{2,3,5},{4}}
e Conditioned on 7, can use sample 7 | C
dynamic programming to 41523
efficiently sample all of C sample C | 7, x
e If sample in augmented model, {{4,1},{5},{2,3}}
can marginalize out (ignore) 7 to sample 7 | C

recover original model 54132

10
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Sampling the permutation

p(m | C,x)

What's p(7w | C)?

Let II(C) = permutations consistent with C (all clusters contiguous
in permutation)
Example:

Clustering C = {{1,3},{2}}

Consistent permutations:

132 312 213 231 +23 32+
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Sampling the permutation

p(m | C,x)

What's p(7 | C)7?
Let II(C) = permutations consistent with C (all clusters contiguous
in permutation)
Example:

Clustering C = {{1,3},{2}}

Consistent permutations:

132 312 213 231 +23 32+
p(m | C) = uniform over II(C)

1
— CIT el if m € II(C), else 0.
Llecec €1

11



Sampling the clustering

p(C | m,x) o p(C)p(x | C)p(m | C)

Number of consistent clusterings C: 27!

Example:
Permutation m = 312

Consistent clusterings C:

135,11}, 12}
13, 1},{2}
315,11,2}

{3,1,2}

12



Sampling the clustering
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Sampling the clustering

@/@2@ p(C | m,x) o< p(C)p(x | C)p(7 | C)

p(C) = M(ngaouc\ )

p(X | C) — Hp(Xc)

17 € II(C
pim| €)= cg\'rel( 12\]!
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Sampling the clustering
@/@2@ p(C [ m,x) < p(C)p(x | C)p(7 | C)
— (| |

lm e II(C)]
‘C"HCEC ’C"

1|7 e agp XC

C,

( " X) AF CV(), ‘C" H
%,_/CGCH,—/

A(C)) B(c)

p(r | C) =

13



Goal: p(m,x)

p(C,m,x) =

= D k-—

DPDP
AlC) 1] B(o)

ceC

 A(K) Z H B(c)

C:well(C),|C|=K ceC

v

def
=g(n,K)
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DPDP

p(C,m,x) = A(C|) ]| B(e)

ceC

Goal: p(m,x) =S % _, A(K) > 1] B(c)

C:well(C),|C|=K ceC

N

def
=g(n,K)

g(r, K') = sum over clusterings of 1...r with K clusters
g(ra K) — Zrmzl g(T — m, K — 1)B({7T?“—m—|—17 <o 77TT'})

B({Tr—ma1y---sTr})

g(r_va_l) g(T,K)
Running time: O(n?), space: O(n?)

14



Optimizations

Current running time: O(n 3) space: O(n 2)
p(C,m,x) = A(|C)) || B(c

ceC
® Remove dependence on |C| to get MH proposal =
O(n?) dynamic program

e Use a beam = O(n) time

Final running time: empirically O(n), space: O(n)

15



Data-dependent permutations
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Data-dependent permutations

Goal: use data x to guide permutation—place similar
points near each other
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Data-dependent permutations

Goal: use data x to guide permutation—place similar
points near each other

Two possible p(7 | C, x):
e Markov Gibbs scans
e Random projections

16



Random projections

How to sample from p(7 | C, x):

e Choose a random direction u
e Project points onto u =- induces permutation
e Note: keep clusters contiguous in permutation

1

2
3 4

Permutation induced by projection u: 3124
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Random projections

How to sample from p(7 | C, x):

e Choose a random direction u
e Project points onto u =- induces permutation
e Note: keep clusters contiguous in permutation

1

2
3 4

Permutation induced by projection u: 3124

Computing p(7 | C,x) is hard; ignore it = stochastic
hill-climbing algorithm

17



Experimental setup

Interleave different moves to form hybrid samplers:

—+— (GIBBS Collapsed Gibbs [Escobar, West, 1995]
—>— GIBBS+SPLITMERGE With split-merge [Dahl, 2003]
—%— GIBBS+PERM With permutation (this paper)

—=— GIBBS+SPLITMERGE+PERM With all three moves
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Experimental setup

Interleave different moves to form hybrid samplers:

—+— (GIBBS Collapsed Gibbs [Escobar, West, 1995]
—>— GIBBS+SPLITMERGE With split-merge [Dahl, 2003]
—%— GIBBS+PERM With permutation (this paper)

—=— GIBBS+SPLITMERGE+PERM With all three moves

e Run on synthetic Gaussians and two real-world datasets
e Evaluate on log-probability of clustering

18



Synthetic Gaussians

Setup: generate mixture of Gaussians: 10,000 points, 10-80
dimensions, 20—160 true clusters

00000000
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-850000

-700000

750000

-800000 -
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—+— (IBBS

log probability

750000 -

00000000
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600 800
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Synthetic Gaussians

Setup: generate mixture of Gaussians: 10,000 points, 10-80
dimensions, 20—160 true clusters

(9) 40 dlmenS|ons 40 true clusters () 160 true clusters 40 dlmenS|ons |

‘—;‘; ‘I --‘ X1 -—‘ ‘ 4 W 7, l\-LVI:
= m; =y v . =

¥m
e --p st
tH—

00000000

00000000

log probability
log probability

00000000

00000000

" seconds ) "7 " seconds
—+— (GIBBS

—>— GIBBS+SPLITMERGE

—%— GIBBS+PERM

—&— GIBBS+SPLITMERGE+PERM

e GIBBS+PERM significantly outperforms (GIBBS

e GIBBS+PERM outperforms GIBBS-+SPLITMERGE,
especially when there are many clusters
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AP dataset

2246 points, 10,473 dimensions [multinomial model]
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GIBBS+SPLITMERGE+PERM performs best
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MNIST dataset

10,000 points, 50 dimensions (obtained via PCA on pixels)
[Gaussian model]
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Conclusions

e Inference algorithms for DP mixtures suffer from local
minima when they make small moves

e Key idea: can use dynamic programming to sum over
all clusterings consistent with a permutation

e Random projections yields effective stochastic
hill-climbing algorithm
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Conclusions

e Inference algorithms for DP mixtures suffer from local
minima when they make small moves

e Key idea: can use dynamic programming to sum over
all clusterings consistent with a permutation

e Random projections yields effective stochastic
hill-climbing algorithm

What sampler should | use for my data?
e Gibbs is good at refining clusterings
e Split-merge is good when there are few clusters

e Permutation-augmented is good at changing many
clusters at once
Combining all three often leads to best performance.
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