A Permutation-Augmented Sampler for DP Mixture Models

ICML 2007 Corvallis, Oregon June 21, 2007

UC Berkeley

Percy Liang Michael I. Jordan UC Berkeley

Ben Taskar U Penn

Introduction

Dirichlet process mixture models:

- Clustering applications:
 - natural language processing, e.g. [Blei, et. al, 2004;
 Daume, Marcu, 2005; Goldwater, et. al, 2006; Liang, et. al, 2007]
 - vision, e.g. [Sudderth, et. al, 2006]
 - bioinformatics, e.g. [Xing, et. al, 2004]
- Nonparametric: number of clusters adapts to data
- Current inference based on local moves

Introduction

Dirichlet process mixture models:

- Clustering applications:
 - natural language processing, e.g. [Blei, et. al, 2004;
 Daume, Marcu, 2005; Goldwater, et. al, 2006; Liang, et. al, 2007]
 - vision, e.g. [Sudderth, et. al, 2006]
 - bioinformatics, e.g. [Xing, et. al, 2004]
- Nonparametric: number of clusters adapts to data
- Current inference based on local moves

Outline:

- DP mixture model
- \bullet Permutation-augmented model \Rightarrow global moves
- Experiments

Dirichlet processes

DP mixture model

$$G \sim \mathsf{DP}(\alpha_0, G_0)$$
 For each data point $i=1,\ldots,n$: $\theta_i \sim G$ $x_i \sim F(\theta_i)$

Dirichlet processes

Definition: $G_0 = \text{a distribution on } \Theta$, $\alpha_0 = \text{concentration parameter.}$ G is a draw from a Dirichlet process, denoted $G \sim \mathsf{DP}(\alpha_0, G_0)$

Dirichlet processes

DP mixture model

$$G \sim \mathsf{DP}(\alpha_0, G_0)$$

For each data point $i = 1, \ldots, n$:

$$\theta_i \sim G$$

$$x_i \sim F(\theta_i)$$

Definition: $G_0 = a$ distribution on Θ , $\alpha_0 = concentration parameter.$

G is a draw from a Dirichlet process, denoted $G \sim \mathsf{DP}(\alpha_0, G_0)$

 $(G(A_1), \ldots, G(A_K)) \sim \mathsf{Dirichlet}(\alpha_0 G_0(A_1), \ldots, \alpha_0 G_0(A_K))$

for all partitions (A_1, \ldots, A_K) of Θ .

A_1	-	$\overline{A_2}$	Θ
A_3		A_4	

Inference

Representations:

- ullet Chinese restaurant process: marginalize G
- ullet Stick-breaking representation: explicitly represent G

Inference

Representations:

- ullet Chinese restaurant process: marginalize G
- ullet Stick-breaking representation: explicitly represent G

Previous algorithms:

- Collapsed Gibbs sampling [Escobar, West, 1995]
- Blocked Gibbs sampling [Ishwaran, James, 2001]
- Split-merge sampling [Jain, Neal, 2000; Dahl, 2003]
- Variational [Blei, Jordan, 2005; Kurihara, et. al, 2007]
- A-star search [Daume, 2007]

```
G \sim \mathsf{DP}(\alpha_0, G_0) is discrete (with probability 1)
Marginalize out G \Rightarrow \mathsf{induces} clustering \mathbf{C}
Each cluster c \in \mathbf{C} is a subset of \{1, \ldots, n\}
Example: \mathbf{C} = \{\{1\}, \{2, 3, 5\}, \{4\}\}
```

 $G \sim \mathsf{DP}(\alpha_0, G_0)$ is discrete (with probability 1)

Marginalize out $G \Rightarrow$ induces clustering C

Each cluster $c \in \mathbb{C}$ is a subset of $\{1, \ldots, n\}$

Example: $C = \{\{1\}, \{2, 3, 5\}, \{4\}\}$

$$p(i \in c) = \begin{cases} \frac{|c|}{i-1+\alpha_0} & \text{if } c \text{ old} \\ \frac{\alpha_0}{i-1+\alpha_0} & \text{if } c \text{ new} \end{cases}$$

probability:

 $G \sim \mathsf{DP}(\alpha_0, G_0)$ is discrete (with probability 1)

Marginalize out $G \Rightarrow$ induces clustering C

Each cluster $c \in \mathbb{C}$ is a subset of $\{1, \ldots, n\}$

Example: $C = \{\{1\}, \{2, 3, 5\}, \{4\}\}$

$$p(i \in c) = \begin{cases} \frac{|c|}{i-1+\alpha_0} & \text{if } c \text{ old} \\ \frac{\alpha_0}{i-1+\alpha_0} & \text{if } c \text{ new} \end{cases}$$

probability: $\frac{\alpha_0}{0+\alpha_0}$

 $G \sim \mathsf{DP}(\alpha_0, G_0)$ is discrete (with probability 1)

Marginalize out $G \Rightarrow$ induces clustering \mathbf{C}

Each cluster $c \in \mathbb{C}$ is a subset of $\{1, \ldots, n\}$

Example: $C = \{\{1\}, \{2, 3, 5\}, \{4\}\}$

$$p(i \in c) = \begin{cases} \frac{|c|}{i-1+\alpha_0} & \text{if } c \text{ old} \\ \frac{\alpha_0}{i-1+\alpha_0} & \text{if } c \text{ new} \end{cases}$$

probability: $\frac{\alpha_0}{0+\alpha_0} \frac{\alpha_0}{1+\alpha_0}$

 $G \sim \mathsf{DP}(\alpha_0, G_0)$ is discrete (with probability 1)

Marginalize out $G \Rightarrow$ induces clustering C

Each cluster $c \in \mathbb{C}$ is a subset of $\{1, \ldots, n\}$

Example: $C = \{\{1\}, \{2, 3, 5\}, \{4\}\}$

$$p(i \in c) = \begin{cases} \frac{|c|}{i-1+\alpha_0} & \text{if } c \text{ old} \\ \frac{\alpha_0}{i-1+\alpha_0} & \text{if } c \text{ new} \end{cases}$$

probability: $\frac{\alpha_0}{0+\alpha_0} \frac{\alpha_0}{1+\alpha_0} \frac{1}{2+\alpha_0}$

 $G \sim \mathsf{DP}(\alpha_0, G_0)$ is discrete (with probability 1)

Marginalize out $G \Rightarrow$ induces clustering C

Each cluster $c \in \mathbb{C}$ is a subset of $\{1, \ldots, n\}$

Example: $C = \{\{1\}, \{2, 3, 5\}, \{4\}\}$

$$p(i \in c) = \begin{cases} \frac{|c|}{i-1+\alpha_0} & \text{if } c \text{ old} \\ \frac{\alpha_0}{i-1+\alpha_0} & \text{if } c \text{ new} \end{cases}$$

probability: $\frac{\alpha_0}{0+\alpha_0} \frac{\alpha_0}{1+\alpha_0} \frac{1}{2+\alpha_0} \frac{\alpha_0}{3+\alpha_0}$

 $G \sim \mathsf{DP}(\alpha_0, G_0)$ is discrete (with probability 1)

Marginalize out $G \Rightarrow$ induces clustering C

Each cluster $c \in \mathbb{C}$ is a subset of $\{1, \ldots, n\}$

Example: $C = \{\{1\}, \{2, 3, 5\}, \{4\}\}$

$$p(i \in c) = \begin{cases} \frac{|c|}{i-1+\alpha_0} & \text{if } c \text{ old} \\ \frac{\alpha_0}{i-1+\alpha_0} & \text{if } c \text{ new} \end{cases}$$

probability: $\frac{\alpha_0}{0+\alpha_0} \frac{\alpha_0}{1+\alpha_0} \frac{1}{2+\alpha_0} \frac{\alpha_0}{3+\alpha_0} \frac{2}{4+\alpha_0}$

CRP prior over clusterings

Previous example:
$$p(\mathbf{C}) = \frac{\alpha_0}{0+\alpha_0} \frac{\alpha_0}{1+\alpha_0} \frac{1}{2+\alpha_0} \frac{\alpha_0}{3+\alpha_0} \frac{2}{4+\alpha_0}$$

CRP prior over clusterings

Previous example:
$$p(\mathbf{C}) = \frac{\alpha_0}{0+\alpha_0} \frac{\alpha_0}{1+\alpha_0} \frac{1}{2+\alpha_0} \frac{\alpha_0}{3+\alpha_0} \frac{2}{4+\alpha_0}$$

In general:

$$p(\mathbf{C}) = \frac{1}{\mathcal{AF}(\alpha_0, n)} \prod_{c \in \mathbf{C}} \alpha_0(|c| - 1)!$$

$$\mathcal{AF}(\alpha_0,n)=\alpha_0(\alpha_0+1)\cdots(\alpha_0+n-1)$$
 is ascending factorial

Key: $p(\mathbf{C})$ decomposes over clusters c

Each cluster (table) c has a dish θ .

Data points (customers) generated i.i.d. given dish.

Assuming conjugacy, we can marginalize out θ .

Each cluster (table) c has a dish θ .

Data points (customers) generated i.i.d. given dish.

Assuming conjugacy, we can marginalize out θ .

Each cluster (table) c has a dish θ .

Data points (customers) generated i.i.d. given dish.

Assuming conjugacy, we can marginalize out θ .

$$\frac{p(\mathbf{C})}{\mathcal{A}\mathcal{F}(\alpha_0, n)} \prod_{c \in \mathbf{C}} \alpha_0(|c| - 1)!$$

$$\frac{\theta_i}{\mathbf{x}} \qquad p(\mathbf{x} \mid \mathbf{C}) = \prod_{c \in \mathbf{C}} \int \prod_{i \in c} F(x_i; \theta) G_0(d\theta)$$

$$\frac{\det_{\mathbf{C}} f(\mathbf{x}_c)}{\mathbf{x}} \qquad \frac{\det_{\mathbf{C}} f(\mathbf$$

Key: $p(\mathbf{C})$ and $p(\mathbf{x} \mid \mathbf{C})$ decompose over clusters c

 Exact inference: sum over exponential number of clusterings

Goal: compute $p(\mathbf{C} \mid \mathbf{x})$

- Exact inference: sum over exponential number of clusterings
- Collapsed Gibbs sampler: change C one assignment at a time

Goal: compute $p(\mathbf{C} \mid \mathbf{x})$

- Exact inference: sum over exponential number of clusterings
- Collapsed Gibbs sampler: change C one assignment at a time
- Split-merge sampler: change C two clusters at a time

Goal: compute $p(\mathbf{C} \mid \mathbf{x})$

- Exact inference: sum over exponential number of clusterings
- Collapsed Gibbs sampler: change C one assignment at a time
- Split-merge sampler: change C two clusters at a time
- Permutation-augmented sampler: can change all of C

Local optima

Collapsed Gibbs can get stuck in local optima

Hard to reach this state:

Sampler: alternate between sampling ${f C}$ and π

Sampler: alternate between sampling ${\bf C}$ and π Why augment?

• Conditioned on π , can use dynamic programming to efficiently sample all of ${\bf C}$

Sampler: alternate between sampling ${\bf C}$ and π Why augment?

- Conditioned on π , can use dynamic programming to efficiently sample all of ${\bf C}$
- If sample in augmented model, can marginalize out (ignore) π to recover original model

Sampler: alternate between sampling ${f C}$ and π

Why augment?

 $\{\{1\},\{2,3,5\},\{4\}\}$

- Conditioned on π , can use dynamic programming to efficiently sample all of ${\bf C}$
- If sample in augmented model, can marginalize out (ignore) π to recover original model

Sampler: alternate between sampling ${f C}$ and π

Why augment?

- Conditioned on π , can use dynamic programming to efficiently sample all of ${\bf C}$
- If sample in augmented model, can marginalize out (ignore) π to recover original model

```
\{\{1\}, \{2, 3, 5\}, \{4\}\} sample \pi \mid \mathbf{C} 4 1 5 2 3
```


Sampler: alternate between sampling ${f C}$ and π

Why augment?

- Conditioned on π , can use dynamic programming to efficiently sample all of ${\bf C}$
- If sample in augmented model, can marginalize out (ignore) π to recover original model

```
 \{\{1\}, \{2, 3, 5\}, \{4\}\}  sample \pi \mid \mathbf{C}  4\ 1\ 5\ 2\ 3  sample \mathbf{C} \mid \pi, \mathbf{x}  \{\{4, 1\}, \{5\}, \{2, 3\}\}
```


Sampler: alternate between sampling ${f C}$ and π

Why augment?

- Conditioned on π , can use dynamic programming to efficiently sample all of ${\bf C}$
- If sample in augmented model, can marginalize out (ignore) π to recover original model

```
 \{\{1\}, \{2, 3, 5\}, \{4\}\} \}  sample \pi \mid \mathbf{C}  4\ 1\ 5\ 2\ 3  sample \mathbf{C} \mid \pi, \mathbf{x}  \{\{4, 1\}, \{5\}, \{2, 3\}\} \}  sample \pi \mid \mathbf{C}  5\ 4\ 1\ 3\ 2
```

Sampling the permutation

Sampling the permutation

What's $p(\pi \mid \mathbf{C})$?

Let $\Pi(\mathbf{C})=$ permutations consistent with \mathbf{C} (all clusters contiguous in permutation)

Example:

Clustering $C = \{\{1, 3\}, \{2\}\}$

Consistent permutations:

132 312 213 231 123 321

Sampling the permutation

What's $p(\pi \mid \mathbf{C})$?

Let $\Pi(\mathbf{C}) = \text{permutations consistent with } \mathbf{C}$ (all clusters contiguous in permutation)

Example:

Clustering $C = \{\{1, 3\}, \{2\}\}$

Consistent permutations:

$$132 \quad 312 \quad 213 \quad 231 \quad \frac{123}{321}$$

$$p(\pi \mid \mathbf{C}) = \text{uniform over } \Pi(\mathbf{C})$$

$$= \frac{1}{|\mathbf{C}|! \prod_{c \in \mathbf{C}} |c|!} \text{ if } \pi \in \Pi(\mathbf{C}), \text{ else 0.}$$

Number of consistent clusterings C: 2^{n-1}

Example:

Permutation $\pi = 312$

Consistent clusterings C:

$$\{3\}, \{1\}, \{2\}$$

 $\{3,1\}, \{2\}$
 $\{3\}, \{1,2\}$
 $\{3,1,2\}$

DPDP

$$p(\mathbf{C}, \pi, \mathbf{x}) = A(|\mathbf{C}|) \prod_{c \in \mathbf{C}} B(c)$$
 Goal:
$$p(\pi, \mathbf{x}) = \sum_{K=1}^{n} A(K) \sum_{\substack{\mathbf{C}: \pi \in \Pi(\mathbf{C}), |\mathbf{C}| = K}} \prod_{c \in \mathbf{C}} B(c)$$

DPDP

$$p(\mathbf{C}, \pi, \mathbf{x}) = A(|\mathbf{C}|) \prod_{c \in \mathbf{C}} \underline{B(c)}$$
 Goal:
$$p(\pi, \mathbf{x}) = \sum_{K=1}^{n} A(K) \sum_{\substack{\mathbf{C}: \pi \in \Pi(\mathbf{C}), |\mathbf{C}| = K}} \prod_{c \in \mathbf{C}} \underline{B(c)}$$

$$g(r, K) = \text{sum over clusterings of } 1 \dots r \text{ with } K \text{ clusters}$$

$$g(r,K) = \sum_{m=1}^{r} g(r-m,K-1)B(\{\pi_{r-m+1},\ldots,\pi_r\})$$

$$B(\{\pi_{r-m+1},\ldots,\pi_r\})$$

$$1 \qquad r-m \qquad r \cdots$$

$$g(r-m,K-1) \qquad g(r,K)$$

Running time: $O(n^3)$, space: $O(n^2)$

Optimizations

Current running time: $O(n^3)$, space: $O(n^2)$

$$p(\mathbf{C}, \pi, \mathbf{x}) = A(|\mathbf{C}|) \prod_{c \in \mathbf{C}} B(c)$$

- ullet Remove dependence on $|{f C}|$ to get MH proposal \Rightarrow $O(n^2)$ dynamic program
- Use a beam $\Rightarrow O(n)$ time

Final running time: empirically O(n), space: O(n)

Data-dependent permutations

Data-dependent permutations

Goal: use data x to guide permutation—place similar points near each other

Data-dependent permutations

Goal: use data x to guide permutation—place similar points near each other

Two possible $p(\pi \mid \mathbf{C}, \mathbf{x})$:

- Markov Gibbs scans
- Random projections

Random projections

How to sample from $p(\pi \mid \mathbf{C}, \mathbf{x})$:

- Choose a random direction u
- Project points onto $u \Rightarrow$ induces permutation
- Note: keep clusters contiguous in permutation

Permutation induced by projection u: 3 1 2 4

Random projections

How to sample from $p(\pi \mid \mathbf{C}, \mathbf{x})$:

- Choose a random direction *u*
- ullet Project points onto $u \Rightarrow$ induces permutation
- Note: keep clusters contiguous in permutation

Permutation induced by projection u: 3 1 2 4

Computing $p(\pi \mid \mathbf{C}, \mathbf{x})$ is hard; ignore it \Rightarrow stochastic hill-climbing algorithm

Experimental setup

Interleave different moves to form hybrid samplers:

—— GIBBS Collapsed Gibbs [Escobar, West, 1995]

 \longrightarrow GIBBS+SPLITMERGE With split-merge [Dahl, 2003]

——— GIBBS+PERM With permutation (this paper)

—□ GIBBS+SPLITMERGE+PERM With all three moves

Experimental setup

Interleave different moves to form hybrid samplers:

- Run on synthetic Gaussians and two real-world datasets
- Evaluate on log-probability of clustering

Synthetic Gaussians

Setup: generate mixture of Gaussians: 10,000 points, 10–80 dimensions, 20–160 true clusters

Synthetic Gaussians

Setup: generate mixture of Gaussians: 10,000 points, 10–80 dimensions, 20–160 true clusters

- GIBBS+PERM significantly outperforms GIBBS
- GIBBS+PERM outperforms GIBBS+SPLITMERGE, especially when there are many clusters

AP dataset

2246 points, 10,473 dimensions [multinomial model]

GIBBS+SPLITMERGE outperforms GIBBS+PERM
GIBBS+SPLITMERGE+PERM performs best

MNIST dataset

10,000 points, 50 dimensions (obtained via PCA on pixels) [Gaussian model]

GIBBS+PERM outperforms GIBBS+SPLITMERGE
GIBBS+SPLITMERGE+PERM performs best

Conclusions

- Inference algorithms for DP mixtures suffer from local minima when they make small moves
- Key idea: can use dynamic programming to sum over all clusterings consistent with a permutation
- Random projections yields effective stochastic hill-climbing algorithm

Conclusions

- Inference algorithms for DP mixtures suffer from local minima when they make small moves
- Key idea: can use dynamic programming to sum over all clusterings consistent with a permutation
- Random projections yields effective stochastic hill-climbing algorithm

What sampler should I use for my data?

- Gibbs is good at refining clusterings
- Split-merge is good when there are few clusters
- Permutation-augmented is good at changing many clusters at once

Conclusions

- Inference algorithms for DP mixtures suffer from local minima when they make small moves
- Key idea: can use dynamic programming to sum over all clusterings consistent with a permutation
- Random projections yields effective stochastic hill-climbing algorithm

What sampler should I use for my data?

- Gibbs is good at refining clusterings
- Split-merge is good when there are few clusters
- Permutation-augmented is good at changing many clusters at once

Combining all three often leads to best performance.