1. 13.5 Named character references

13.5 Named character references

This table lists the character reference names that are supported by HTML, and the code points to which they refer. It is referenced by the previous sections.

It is intentional, for legacy compatibility, that many code points have multiple character reference names. For example, some appear both with and without the trailing semicolon, or with different capitalizations.

Name Character(s) Glyph
Aacute; U+000C1 Á
Aacute U+000C1 Á
aacute; U+000E1 ÃĄ
aacute U+000E1 ÃĄ
Abreve; U+00102 Ă
abreve; U+00103 ă
ac; U+0223E ∞
acd; U+0223F âˆŋ
acE; U+0223E U+00333 âˆžĖŗ
Acirc; U+000C2 Â
Acirc U+000C2 Â
acirc; U+000E2 Ãĸ
acirc U+000E2 Ãĸ
acute; U+000B4 ´
acute U+000B4 ´
Acy; U+00410 А
acy; U+00430 а
AElig; U+000C6 Æ
AElig U+000C6 Æ
aelig; U+000E6 ÃĻ
aelig U+000E6 ÃĻ
af; U+02061 ⁥
Afr; U+1D504 𝔄
afr; U+1D51E 𝔞
Agrave; U+000C0 À
Agrave U+000C0 À
agrave; U+000E0 à
agrave U+000E0 à
alefsym; U+02135 â„ĩ
aleph; U+02135 â„ĩ
Alpha; U+00391 Α
alpha; U+003B1 Îą
Amacr; U+00100 Ā
amacr; U+00101 ā
amalg; U+02A3F â¨ŋ
AMP; U+00026 &
AMP U+00026 &
amp; U+00026 &
amp U+00026 &
And; U+02A53 ⩓
and; U+02227 ∧
andand; U+02A55 ⩕
andd; U+02A5C ⩜
andslope; U+02A58 ⊘
andv; U+02A5A ⩚
ang; U+02220 ∠
ange; U+029A4 âϤ
angle; U+02220 ∠
angmsd; U+02221 ∥
angmsdaa; U+029A8 âύ
angmsdab; U+029A9 âĻŠ
angmsdac; U+029AA âĻĒ
angmsdad; U+029AB âĻĢ
angmsdae; U+029AC âĻŦ
angmsdaf; U+029AD âĻ­
angmsdag; U+029AE âĻŽ
angmsdah; U+029AF âϝ
angrt; U+0221F ∟
angrtvb; U+022BE ⊾
angrtvbd; U+0299D âĻ
angsph; U+02222 âˆĸ
angst; U+000C5 Å
angzarr; U+0237C âŧ
Aogon; U+00104 Ą
aogon; U+00105 ą
Aopf; U+1D538 𝔸
aopf; U+1D552 𝕒
ap; U+02248 ≈
apacir; U+02A6F ⊯
apE; U+02A70 ⊰
ape; U+0224A ≊
apid; U+0224B ≋
apos; U+00027 '
ApplyFunction; U+02061 ⁥
approx; U+02248 ≈
approxeq; U+0224A ≊
Aring; U+000C5 Å
Aring U+000C5 Å
aring; U+000E5 ÃĨ
aring U+000E5 ÃĨ
Ascr; U+1D49C 𝒜
ascr; U+1D4B6 đ’ļ
Assign; U+02254 ≔
ast; U+0002A *
asymp; U+02248 ≈
asympeq; U+0224D ≍
Atilde; U+000C3 Ã
Atilde U+000C3 Ã
atilde; U+000E3 ÃŖ
atilde U+000E3 ÃŖ
Auml; U+000C4 Ä
Auml U+000C4 Ä
auml; U+000E4 ä
auml U+000E4 ä
awconint; U+02233 âˆŗ
awint; U+02A11 ⨑
backcong; U+0224C ≌
backepsilon; U+003F6 Īļ
backprime; U+02035 â€ĩ
backsim; U+0223D âˆŊ
backsimeq; U+022CD ⋍
Backslash; U+02216 ∖
Barv; U+02AE7 â̧
barvee; U+022BD âŠŊ
Barwed; U+02306 ⌆
barwed; U+02305 ⌅
barwedge; U+02305 ⌅
bbrk; U+023B5 âŽĩ
bbrktbrk; U+023B6 âŽļ
bcong; U+0224C ≌
Bcy; U+00411 Б
bcy; U+00431 Đą
bdquo; U+0201E „
becaus; U+02235 âˆĩ
Because; U+02235 âˆĩ
because; U+02235 âˆĩ
bemptyv; U+029B0 âϰ
bepsi; U+003F6 Īļ
bernou; U+0212C â„Ŧ
Bernoullis; U+0212C â„Ŧ
Beta; U+00392 Β
beta; U+003B2 β
beth; U+02136 â„ļ
between; U+0226C â‰Ŧ
Bfr; U+1D505 𝔅
bfr; U+1D51F 𝔟
bigcap; U+022C2 ⋂
bigcirc; U+025EF ◯
bigcup; U+022C3 ⋃
bigodot; U+02A00 ⨀
bigoplus; U+02A01 ⨁
bigotimes; U+02A02 ⨂
bigsqcup; U+02A06 ⨆
bigstar; U+02605 ★
bigtriangledown; U+025BD â–Ŋ
bigtriangleup; U+025B3 â–ŗ
biguplus; U+02A04 ⨄
bigvee; U+022C1 ⋁
bigwedge; U+022C0 ⋀
bkarow; U+0290D ⤍
blacklozenge; U+029EB â§Ģ
blacksquare; U+025AA â–Ē
blacktriangle; U+025B4 ▴
blacktriangledown; U+025BE ▾
blacktriangleleft; U+025C2 ◂
blacktriangleright; U+025B8 ▸
blank; U+02423 âŖ
blk12; U+02592 ▒
blk14; U+02591 ░
blk34; U+02593 ▓
block; U+02588 █
bne; U+0003D U+020E5 =âƒĨ
bnequiv; U+02261 U+020E5 ≡âƒĨ
bNot; U+02AED âĢ­
bnot; U+02310 ⌐
Bopf; U+1D539 𝔹
bopf; U+1D553 𝕓
bot; U+022A5 âŠĨ
bottom; U+022A5 âŠĨ
bowtie; U+022C8 ⋈
boxbox; U+029C9 ⧉
boxDL; U+02557 ╗
boxDl; U+02556 ╖
boxdL; U+02555 ╕
boxdl; U+02510 ┐
boxDR; U+02554 ╔
boxDr; U+02553 ╓
boxdR; U+02552 ╒
boxdr; U+0250C ┌
boxH; U+02550 ═
boxh; U+02500 ─
boxHD; U+02566 â•Ļ
boxHd; U+02564 ╤
boxhD; U+02565 â•Ĩ
boxhd; U+0252C â”Ŧ
boxHU; U+02569 ╩
boxHu; U+02567 ╧
boxhU; U+02568 ╨
boxhu; U+02534 ┴
boxminus; U+0229F ⊟
boxplus; U+0229E ⊞
boxtimes; U+022A0 ⊠
boxUL; U+0255D ╝
boxUl; U+0255C ╜
boxuL; U+0255B ╛
boxul; U+02518 ┘
boxUR; U+0255A ╚
boxUr; U+02559 ╙
boxuR; U+02558 ╘
boxur; U+02514 └
boxV; U+02551 ║
boxv; U+02502 │
boxVH; U+0256C â•Ŧ
boxVh; U+0256B â•Ģ
boxvH; U+0256A â•Ē
boxvh; U+0253C â”ŧ
boxVL; U+02563 â•Ŗ
boxVl; U+02562 â•ĸ
boxvL; U+02561 ╡
boxvl; U+02524 ┤
boxVR; U+02560 ╠
boxVr; U+0255F ╟
boxvR; U+0255E ╞
boxvr; U+0251C ├
bprime; U+02035 â€ĩ
Breve; U+002D8 ˘
breve; U+002D8 ˘
brvbar; U+000A6 ÂĻ
brvbar U+000A6 ÂĻ
Bscr; U+0212C â„Ŧ
bscr; U+1D4B7 𝒷
bsemi; U+0204F ⁏
bsim; U+0223D âˆŊ
bsime; U+022CD ⋍
bsol; U+0005C \
bsolb; U+029C5 ⧅
bsolhsub; U+027C8 ⟈
bull; U+02022 â€ĸ
bullet; U+02022 â€ĸ
bump; U+0224E ≎
bumpE; U+02AAE âĒŽ
bumpe; U+0224F ≏
Bumpeq; U+0224E ≎
bumpeq; U+0224F ≏
Cacute; U+00106 Ć
cacute; U+00107 ć
Cap; U+022D2 ⋒
cap; U+02229 ∊
capand; U+02A44 ⩄
capbrcup; U+02A49 ⩉
capcap; U+02A4B ⩋
capcup; U+02A47 ⩇
capdot; U+02A40 ⩀
CapitalDifferentialD; U+02145 ⅅ
caps; U+02229 U+0FE00 âˆŠī¸€
caret; U+02041 ⁁
caron; U+002C7 ˇ
Cayleys; U+0212D ℭ
ccaps; U+02A4D ⊍
Ccaron; U+0010C Č
ccaron; U+0010D č
Ccedil; U+000C7 Ç
Ccedil U+000C7 Ç
ccedil; U+000E7 ç
ccedil U+000E7 ç
Ccirc; U+00108 Ĉ
ccirc; U+00109 ĉ
Cconint; U+02230 ∰
ccups; U+02A4C ⩌
ccupssm; U+02A50 ⊐
Cdot; U+0010A Ċ
cdot; U+0010B ċ
cedil; U+000B8 ¸
cedil U+000B8 ¸
Cedilla; U+000B8 ¸
cemptyv; U+029B2 âϞ
cent; U+000A2 Âĸ
cent U+000A2 Âĸ
CenterDot; U+000B7 ¡
centerdot; U+000B7 ¡
Cfr; U+0212D ℭ
cfr; U+1D520 𝔠
CHcy; U+00427 Ч
chcy; U+00447 ҇
check; U+02713 ✓
checkmark; U+02713 ✓
Chi; U+003A7 Χ
chi; U+003C7 ·
cir; U+025CB ○
circ; U+002C6 ˆ
circeq; U+02257 ≗
circlearrowleft; U+021BA â†ē
circlearrowright; U+021BB â†ģ
circledast; U+0229B ⊛
circledcirc; U+0229A ⊚
circleddash; U+0229D ⊝
CircleDot; U+02299 ⊙
circledR; U+000AE ÂŽ
circledS; U+024C8 Ⓢ
CircleMinus; U+02296 ⊖
CirclePlus; U+02295 ⊕
CircleTimes; U+02297 ⊗
cirE; U+029C3 ⧃
cire; U+02257 ≗
cirfnint; U+02A10 ⨐
cirmid; U+02AEF â̝
cirscir; U+029C2 ⧂
ClockwiseContourIntegral; U+02232 ∲
CloseCurlyDoubleQuote; U+0201D ”
CloseCurlyQuote; U+02019 ’
clubs; U+02663 â™Ŗ
clubsuit; U+02663 â™Ŗ
Colon; U+02237 ∡
colon; U+0003A :
Colone; U+02A74 ⊴
colone; U+02254 ≔
coloneq; U+02254 ≔
comma; U+0002C ,
commat; U+00040 @
comp; U+02201 ∁
compfn; U+02218 ∘
complement; U+02201 ∁
complexes; U+02102 ℂ
cong; U+02245 ≅
congdot; U+02A6D ⊭
Congruent; U+02261 ≡
Conint; U+0222F ∯
conint; U+0222E ∎
ContourIntegral; U+0222E ∎
Copf; U+02102 ℂ
copf; U+1D554 𝕔
coprod; U+02210 ∐
Coproduct; U+02210 ∐
COPY; U+000A9 Š
COPY U+000A9 Š
copy; U+000A9 Š
copy U+000A9 Š
copysr; U+02117 ℗
CounterClockwiseContourIntegral; U+02233 âˆŗ
crarr; U+021B5 â†ĩ
Cross; U+02A2F ⨯
cross; U+02717 ✗
Cscr; U+1D49E 𝒞
cscr; U+1D4B8 𝒸
csub; U+02ACF âĢ
csube; U+02AD1 âĢ‘
csup; U+02AD0 â̐
csupe; U+02AD2 âĢ’
ctdot; U+022EF ⋯
cudarrl; U+02938 ⤸
cudarrr; U+02935 â¤ĩ
cuepr; U+022DE ⋞
cuesc; U+022DF ⋟
cularr; U+021B6 â†ļ
cularrp; U+0293D â¤Ŋ
Cup; U+022D3 ⋓
cup; U+0222A âˆĒ
cupbrcap; U+02A48 ⊈
CupCap; U+0224D ≍
cupcap; U+02A46 ⩆
cupcup; U+02A4A ⩊
cupdot; U+0228D ⊍
cupor; U+02A45 ⩅
cups; U+0222A U+0FE00 âˆĒ
curarr; U+021B7 ↷
curarrm; U+0293C â¤ŧ
curlyeqprec; U+022DE ⋞
curlyeqsucc; U+022DF ⋟
curlyvee; U+022CE ⋎
curlywedge; U+022CF ⋏
curren; U+000A4 ¤
curren U+000A4 ¤
curvearrowleft; U+021B6 â†ļ
curvearrowright; U+021B7 ↷
cuvee; U+022CE ⋎
cuwed; U+022CF ⋏
cwconint; U+02232 ∲
cwint; U+02231 ∹
cylcty; U+0232D ⌭
Dagger; U+02021 ‡
dagger; U+02020 †
daleth; U+02138 ℸ
Darr; U+021A1 ↡
dArr; U+021D3 ⇓
darr; U+02193 ↓
dash; U+02010 ‐
Dashv; U+02AE4 â̤
dashv; U+022A3 âŠŖ
dbkarow; U+0290F ⤏
dblac; U+002DD ˝
Dcaron; U+0010E Ď
dcaron; U+0010F ď
Dcy; U+00414 Д
dcy; U+00434 Đ´
DD; U+02145 ⅅ
dd; U+02146 ⅆ
ddagger; U+02021 ‡
ddarr; U+021CA ⇊
DDotrahd; U+02911 ⤑
ddotseq; U+02A77 ⊡
deg; U+000B0 °
deg U+000B0 °
Del; U+02207 ∇
Delta; U+00394 Δ
delta; U+003B4 δ
demptyv; U+029B1 âĻą
dfisht; U+0297F âĨŋ
Dfr; U+1D507 𝔇
dfr; U+1D521 𝔡
dHar; U+02965 âĨĨ
dharl; U+021C3 ⇃
dharr; U+021C2 ⇂
DiacriticalAcute; U+000B4 ´
DiacriticalDot; U+002D9 ˙
DiacriticalDoubleAcute; U+002DD ˝
DiacriticalGrave; U+00060 `
DiacriticalTilde; U+002DC ˜
diam; U+022C4 ⋄
Diamond; U+022C4 ⋄
diamond; U+022C4 ⋄
diamondsuit; U+02666 â™Ļ
diams; U+02666 â™Ļ
die; U+000A8 ¨
DifferentialD; U+02146 ⅆ
digamma; U+003DD Ī
disin; U+022F2 ⋲
div; U+000F7 Ãˇ
divide; U+000F7 Ãˇ
divide U+000F7 Ãˇ
divideontimes; U+022C7 ⋇
divonx; U+022C7 ⋇
DJcy; U+00402 Ђ
djcy; U+00452 Ņ’
dlcorn; U+0231E ⌞
dlcrop; U+0230D ⌍
dollar; U+00024 $
Dopf; U+1D53B đ”ģ
dopf; U+1D555 𝕕
Dot; U+000A8 ¨
dot; U+002D9 ˙
DotDot; U+020DC ◌⃜
doteq; U+02250 ≐
doteqdot; U+02251 ≑
DotEqual; U+02250 ≐
dotminus; U+02238 ∸
dotplus; U+02214 ∔
dotsquare; U+022A1 ⊡
doublebarwedge; U+02306 ⌆
DoubleContourIntegral; U+0222F ∯
DoubleDot; U+000A8 ¨
DoubleDownArrow; U+021D3 ⇓
DoubleLeftArrow; U+021D0 ⇐
DoubleLeftRightArrow; U+021D4 ⇔
DoubleLeftTee; U+02AE4 â̤
DoubleLongLeftArrow; U+027F8 ⟸
DoubleLongLeftRightArrow; U+027FA âŸē
DoubleLongRightArrow; U+027F9 ⟹
DoubleRightArrow; U+021D2 ⇒
DoubleRightTee; U+022A8 ⊨
DoubleUpArrow; U+021D1 ⇑
DoubleUpDownArrow; U+021D5 ⇕
DoubleVerticalBar; U+02225 âˆĨ
DownArrow; U+02193 ↓
Downarrow; U+021D3 ⇓
downarrow; U+02193 ↓
DownArrowBar; U+02913 ⤓
DownArrowUpArrow; U+021F5 â‡ĩ
DownBreve; U+00311 â—ŒĖ‘
downdownarrows; U+021CA ⇊
downharpoonleft; U+021C3 ⇃
downharpoonright; U+021C2 ⇂
DownLeftRightVector; U+02950 âĨ
DownLeftTeeVector; U+0295E âĨž
DownLeftVector; U+021BD â†Ŋ
DownLeftVectorBar; U+02956 âĨ–
DownRightTeeVector; U+0295F âĨŸ
DownRightVector; U+021C1 ⇁
DownRightVectorBar; U+02957 âĨ—
DownTee; U+022A4 ⊤
DownTeeArrow; U+021A7 ↧
drbkarow; U+02910 ⤐
drcorn; U+0231F ⌟
drcrop; U+0230C ⌌
Dscr; U+1D49F 𝒟
dscr; U+1D4B9 𝒹
DScy; U+00405 Ѕ
dscy; U+00455 Ņ•
dsol; U+029F6 â§ļ
Dstrok; U+00110 Đ
dstrok; U+00111 đ
dtdot; U+022F1 ⋱
dtri; U+025BF â–ŋ
dtrif; U+025BE ▾
duarr; U+021F5 â‡ĩ
duhar; U+0296F âĨ¯
dwangle; U+029A6 âĻĻ
DZcy; U+0040F Џ
dzcy; U+0045F ҟ
dzigrarr; U+027FF âŸŋ
Eacute; U+000C9 É
Eacute U+000C9 É
eacute; U+000E9 Ê
eacute U+000E9 Ê
easter; U+02A6E ⊎
Ecaron; U+0011A Ě
ecaron; U+0011B ě
ecir; U+02256 ≖
Ecirc; U+000CA Ê
Ecirc U+000CA Ê
ecirc; U+000EA ÃĒ
ecirc U+000EA ÃĒ
ecolon; U+02255 ≕
Ecy; U+0042D Đ­
ecy; U+0044D Ņ
eDDot; U+02A77 ⊡
Edot; U+00116 Ė
eDot; U+02251 ≑
edot; U+00117 ė
ee; U+02147 ⅇ
efDot; U+02252 ≒
Efr; U+1D508 𝔈
efr; U+1D522 đ”ĸ
eg; U+02A9A âǚ
Egrave; U+000C8 È
Egrave U+000C8 È
egrave; U+000E8 è
egrave U+000E8 è
egs; U+02A96 âĒ–
egsdot; U+02A98 âǘ
el; U+02A99 âĒ™
Element; U+02208 ∈
elinters; U+023E7 ⏧
ell; U+02113 ℓ
els; U+02A95 âĒ•
elsdot; U+02A97 âĒ—
Emacr; U+00112 Ē
emacr; U+00113 ē
empty; U+02205 ∅
emptyset; U+02205 ∅
EmptySmallSquare; U+025FB â—ģ
emptyv; U+02205 ∅
EmptyVerySmallSquare; U+025AB â–Ģ
emsp; U+02003  
emsp13; U+02004  
emsp14; U+02005  
ENG; U+0014A Ŋ
eng; U+0014B ŋ
ensp; U+02002  
Eogon; U+00118 Ę
eogon; U+00119 ę
Eopf; U+1D53C đ”ŧ
eopf; U+1D556 𝕖
epar; U+022D5 ⋕
eparsl; U+029E3 â§Ŗ
eplus; U+02A71 ⊹
epsi; U+003B5 Îĩ
Epsilon; U+00395 Ε
epsilon; U+003B5 Îĩ
epsiv; U+003F5 Īĩ
eqcirc; U+02256 ≖
eqcolon; U+02255 ≕
eqsim; U+02242 ≂
eqslantgtr; U+02A96 âĒ–
eqslantless; U+02A95 âĒ•
Equal; U+02A75 âŠĩ
equals; U+0003D =
EqualTilde; U+02242 ≂
equest; U+0225F ≟
Equilibrium; U+021CC ⇌
equiv; U+02261 ≡
equivDD; U+02A78 ⊸
eqvparsl; U+029E5 â§Ĩ
erarr; U+02971 âĨą
erDot; U+02253 ≓
Escr; U+02130 ℰ
escr; U+0212F ℯ
esdot; U+02250 ≐
Esim; U+02A73 âŠŗ
esim; U+02242 ≂
Eta; U+00397 Η
eta; U+003B7 Ρ
ETH; U+000D0 Ð
ETH U+000D0 Ð
eth; U+000F0 ð
eth U+000F0 ð
Euml; U+000CB Ë
Euml U+000CB Ë
euml; U+000EB ÃĢ
euml U+000EB ÃĢ
euro; U+020AC â‚Ŧ
excl; U+00021 !
exist; U+02203 ∃
Exists; U+02203 ∃
expectation; U+02130 ℰ
ExponentialE; U+02147 ⅇ
exponentiale; U+02147 ⅇ
fallingdotseq; U+02252 ≒
Fcy; U+00424 Ф
fcy; U+00444 Ņ„
female; U+02640 ♀
ffilig; U+0FB03 īŦƒ
fflig; U+0FB00 īŦ€
ffllig; U+0FB04 īŦ„
Ffr; U+1D509 𝔉
ffr; U+1D523 đ”Ŗ
filig; U+0FB01 īŦ
FilledSmallSquare; U+025FC â—ŧ
FilledVerySmallSquare; U+025AA â–Ē
fjlig; U+00066 U+0006A fj
flat; U+0266D ♭
fllig; U+0FB02 īŦ‚
fltns; U+025B1 ▱
fnof; U+00192 ƒ
Fopf; U+1D53D đ”Ŋ
fopf; U+1D557 𝕗
ForAll; U+02200 ∀
forall; U+02200 ∀
fork; U+022D4 ⋔
forkv; U+02AD9 âĢ™
Fouriertrf; U+02131 ℱ
fpartint; U+02A0D ⨍
frac12; U+000BD ÂŊ
frac12 U+000BD ÂŊ
frac13; U+02153 ⅓
frac14; U+000BC Âŧ
frac14 U+000BC Âŧ
frac15; U+02155 ⅕
frac16; U+02159 ⅙
frac18; U+0215B ⅛
frac23; U+02154 ⅔
frac25; U+02156 ⅖
frac34; U+000BE ž
frac34 U+000BE ž
frac35; U+02157 ⅗
frac38; U+0215C ⅜
frac45; U+02158 ⅘
frac56; U+0215A ⅚
frac58; U+0215D ⅝
frac78; U+0215E ⅞
frasl; U+02044 ⁄
frown; U+02322 âŒĸ
Fscr; U+02131 ℱ
fscr; U+1D4BB đ’ģ
gacute; U+001F5 Įĩ
Gamma; U+00393 Γ
gamma; U+003B3 Îŗ
Gammad; U+003DC Μ
gammad; U+003DD Ī
gap; U+02A86 âdž
Gbreve; U+0011E Ğ
gbreve; U+0011F ğ
Gcedil; U+00122 Äĸ
Gcirc; U+0011C Ĝ
gcirc; U+0011D ĝ
Gcy; U+00413 Г
gcy; U+00433 Đŗ
Gdot; U+00120 Ä 
gdot; U+00121 ÄĄ
gE; U+02267 ≧
ge; U+02265 â‰Ĩ
gEl; U+02A8C ânj
gel; U+022DB ⋛
geq; U+02265 â‰Ĩ
geqq; U+02267 ≧
geqslant; U+02A7E ⊞
ges; U+02A7E ⊞
gescc; U+02AA9 âĒŠ
gesdot; U+02A80 âĒ€
gesdoto; U+02A82 âĒ‚
gesdotol; U+02A84 âĒ„
gesl; U+022DB U+0FE00 â‹›ī¸€
gesles; U+02A94 âĒ”
Gfr; U+1D50A 𝔊
gfr; U+1D524 𝔤
Gg; U+022D9 ⋙
gg; U+0226B â‰Ģ
ggg; U+022D9 ⋙
gimel; U+02137 ℷ
GJcy; U+00403 Ѓ
gjcy; U+00453 Ņ“
gl; U+02277 ≷
gla; U+02AA5 âĒĨ
glE; U+02A92 âĒ’
glj; U+02AA4 âǤ
gnap; U+02A8A âNJ
gnapprox; U+02A8A âNJ
gnE; U+02269 ≩
gne; U+02A88 âLj
gneq; U+02A88 âLj
gneqq; U+02269 ≩
gnsim; U+022E7 ⋧
Gopf; U+1D53E 𝔾
gopf; U+1D558 𝕘
grave; U+00060 `
GreaterEqual; U+02265 â‰Ĩ
GreaterEqualLess; U+022DB ⋛
GreaterFullEqual; U+02267 ≧
GreaterGreater; U+02AA2 âĒĸ
GreaterLess; U+02277 ≷
GreaterSlantEqual; U+02A7E ⊞
GreaterTilde; U+02273 â‰ŗ
Gscr; U+1D4A2 đ’ĸ
gscr; U+0210A ℊ
gsim; U+02273 â‰ŗ
gsime; U+02A8E âĒŽ
gsiml; U+02A90 âǐ
GT; U+0003E >
GT U+0003E >
Gt; U+0226B â‰Ģ
gt; U+0003E >
gt U+0003E >
gtcc; U+02AA7 âǧ
gtcir; U+02A7A âŠē
gtdot; U+022D7 ⋗
gtlPar; U+02995 âĻ•
gtquest; U+02A7C âŠŧ
gtrapprox; U+02A86 âdž
gtrarr; U+02978 âĨ¸
gtrdot; U+022D7 ⋗
gtreqless; U+022DB ⋛
gtreqqless; U+02A8C ânj
gtrless; U+02277 ≷
gtrsim; U+02273 â‰ŗ
gvertneqq; U+02269 U+0FE00 â‰Šī¸€
gvnE; U+02269 U+0FE00 â‰Šī¸€
Hacek; U+002C7 ˇ
hairsp; U+0200A  
half; U+000BD ÂŊ
hamilt; U+0210B ℋ
HARDcy; U+0042A ĐĒ
hardcy; U+0044A Ҋ
hArr; U+021D4 ⇔
harr; U+02194 ↔
harrcir; U+02948 âĨˆ
harrw; U+021AD ↭
Hat; U+0005E ^
hbar; U+0210F ℏ
Hcirc; U+00124 Ĥ
hcirc; U+00125 ÄĨ
hearts; U+02665 â™Ĩ
heartsuit; U+02665 â™Ĩ
hellip; U+02026 â€Ļ
hercon; U+022B9 ⊹
Hfr; U+0210C ℌ
hfr; U+1D525 đ”Ĩ
HilbertSpace; U+0210B ℋ
hksearow; U+02925 â¤Ĩ
hkswarow; U+02926 â¤Ļ
hoarr; U+021FF â‡ŋ
homtht; U+0223B âˆģ
hookleftarrow; U+021A9 ↩
hookrightarrow; U+021AA â†Ē
Hopf; U+0210D ℍ
hopf; U+1D559 𝕙
horbar; U+02015 ―
HorizontalLine; U+02500 ─
Hscr; U+0210B ℋ
hscr; U+1D4BD đ’Ŋ
hslash; U+0210F ℏ
Hstrok; U+00126 ÄĻ
hstrok; U+00127 ħ
HumpDownHump; U+0224E ≎
HumpEqual; U+0224F ≏
hybull; U+02043 ⁃
hyphen; U+02010 ‐
Iacute; U+000CD Í
Iacute U+000CD Í
iacute; U+000ED í
iacute U+000ED í
ic; U+02063 âŖ
Icirc; U+000CE Î
Icirc U+000CE Î
icirc; U+000EE ÃŽ
icirc U+000EE ÃŽ
Icy; U+00418 И
icy; U+00438 и
Idot; U+00130 İ
IEcy; U+00415 Е
iecy; U+00435 Đĩ
iexcl; U+000A1 ÂĄ
iexcl U+000A1 ÂĄ
iff; U+021D4 ⇔
Ifr; U+02111 ℑ
ifr; U+1D526 đ”Ļ
Igrave; U+000CC Ì
Igrave U+000CC Ì
igrave; U+000EC ÃŦ
igrave U+000EC ÃŦ
ii; U+02148 ⅈ
iiiint; U+02A0C ⨌
iiint; U+0222D ∭
iinfin; U+029DC ⧜
iiota; U+02129 ℩
IJlig; U+00132 IJ
ijlig; U+00133 Äŗ
Im; U+02111 ℑ
Imacr; U+0012A ÄĒ
imacr; U+0012B ÄĢ
image; U+02111 ℑ
ImaginaryI; U+02148 ⅈ
imagline; U+02110 ℐ
imagpart; U+02111 ℑ
imath; U+00131 Äą
imof; U+022B7 ⊷
imped; U+001B5 Æĩ
Implies; U+021D2 ⇒
in; U+02208 ∈
incare; U+02105 ℅
infin; U+0221E ∞
infintie; U+029DD ⧝
inodot; U+00131 Äą
Int; U+0222C âˆŦ
int; U+0222B âˆĢ
intcal; U+022BA âŠē
integers; U+02124 ℤ
Integral; U+0222B âˆĢ
intercal; U+022BA âŠē
Intersection; U+022C2 ⋂
intlarhk; U+02A17 ⨗
intprod; U+02A3C â¨ŧ
InvisibleComma; U+02063 âŖ
InvisibleTimes; U+02062 âĸ
IOcy; U+00401 Ё
iocy; U+00451 Ņ‘
Iogon; U+0012E ÄŽ
iogon; U+0012F į
Iopf; U+1D540 𝕀
iopf; U+1D55A 𝕚
Iota; U+00399 Ι
iota; U+003B9 Κ
iprod; U+02A3C â¨ŧ
iquest; U+000BF Âŋ
iquest U+000BF Âŋ
Iscr; U+02110 ℐ
iscr; U+1D4BE 𝒾
isin; U+02208 ∈
isindot; U+022F5 â‹ĩ
isinE; U+022F9 ⋹
isins; U+022F4 ⋴
isinsv; U+022F3 â‹ŗ
isinv; U+02208 ∈
it; U+02062 âĸ
Itilde; U+00128 Ĩ
itilde; U+00129 ÄŠ
Iukcy; U+00406 І
iukcy; U+00456 Ņ–
Iuml; U+000CF Ï
Iuml U+000CF Ï
iuml; U+000EF ï
iuml U+000EF ï
Jcirc; U+00134 Ä´
jcirc; U+00135 Äĩ
Jcy; U+00419 Й
jcy; U+00439 Đš
Jfr; U+1D50D 𝔍
jfr; U+1D527 𝔧
jmath; U+00237 ȡ
Jopf; U+1D541 𝕁
jopf; U+1D55B 𝕛
Jscr; U+1D4A5 đ’Ĩ
jscr; U+1D4BF đ’ŋ
Jsercy; U+00408 Ј
jsercy; U+00458 Ҙ
Jukcy; U+00404 Є
jukcy; U+00454 Ņ”
Kappa; U+0039A Κ
kappa; U+003BA Îē
kappav; U+003F0 ΰ
Kcedil; U+00136 Äļ
kcedil; U+00137 ġ
Kcy; U+0041A К
kcy; U+0043A Đē
Kfr; U+1D50E 𝔎
kfr; U+1D528 𝔨
kgreen; U+00138 ĸ
KHcy; U+00425 ĐĨ
khcy; U+00445 Ņ…
KJcy; U+0040C Ќ
kjcy; U+0045C Ҝ
Kopf; U+1D542 𝕂
kopf; U+1D55C 𝕜
Kscr; U+1D4A6 đ’Ļ
kscr; U+1D4C0 𝓀
lAarr; U+021DA ⇚
Lacute; U+00139 Äš
lacute; U+0013A Äē
laemptyv; U+029B4 âĻ´
lagran; U+02112 ℒ
Lambda; U+0039B Λ
lambda; U+003BB Îģ
Lang; U+027EA âŸĒ
lang; U+027E8 ⟨
langd; U+02991 âĻ‘
langle; U+027E8 ⟨
lap; U+02A85 âĒ…
Laplacetrf; U+02112 ℒ
laquo; U+000AB ÂĢ
laquo U+000AB ÂĢ
Larr; U+0219E ↞
lArr; U+021D0 ⇐
larr; U+02190 ←
larrb; U+021E4 ⇤
larrbfs; U+0291F ⤟
larrfs; U+0291D ⤝
larrhk; U+021A9 ↩
larrlp; U+021AB â†Ģ
larrpl; U+02939 ⤚
larrsim; U+02973 âĨŗ
larrtl; U+021A2 â†ĸ
lat; U+02AAB âĒĢ
lAtail; U+0291B ⤛
latail; U+02919 ⤙
late; U+02AAD âĒ­
lates; U+02AAD U+0FE00 âǭ
lBarr; U+0290E ⤎
lbarr; U+0290C ⤌
lbbrk; U+02772 ❲
lbrace; U+0007B {
lbrack; U+0005B [
lbrke; U+0298B âĻ‹
lbrksld; U+0298F âĻ
lbrkslu; U+0298D âĻ
Lcaron; U+0013D ÄŊ
lcaron; U+0013E Äž
Lcedil; U+0013B Äģ
lcedil; U+0013C Äŧ
lceil; U+02308 ⌈
lcub; U+0007B {
Lcy; U+0041B Л
lcy; U+0043B Đģ
ldca; U+02936 â¤ļ
ldquo; U+0201C “
ldquor; U+0201E „
ldrdhar; U+02967 âĨ§
ldrushar; U+0294B âĨ‹
ldsh; U+021B2 ↲
lE; U+02266 â‰Ļ
le; U+02264 ≤
LeftAngleBracket; U+027E8 ⟨
LeftArrow; U+02190 ←
Leftarrow; U+021D0 ⇐
leftarrow; U+02190 ←
LeftArrowBar; U+021E4 ⇤
LeftArrowRightArrow; U+021C6 ⇆
leftarrowtail; U+021A2 â†ĸ
LeftCeiling; U+02308 ⌈
LeftDoubleBracket; U+027E6 âŸĻ
LeftDownTeeVector; U+02961 âĨĄ
LeftDownVector; U+021C3 ⇃
LeftDownVectorBar; U+02959 âĨ™
LeftFloor; U+0230A ⌊
leftharpoondown; U+021BD â†Ŋ
leftharpoonup; U+021BC â†ŧ
leftleftarrows; U+021C7 ⇇
LeftRightArrow; U+02194 ↔
Leftrightarrow; U+021D4 ⇔
leftrightarrow; U+02194 ↔
leftrightarrows; U+021C6 ⇆
leftrightharpoons; U+021CB ⇋
leftrightsquigarrow; U+021AD ↭
LeftRightVector; U+0294E âĨŽ
LeftTee; U+022A3 âŠŖ
LeftTeeArrow; U+021A4 ↤
LeftTeeVector; U+0295A âĨš
leftthreetimes; U+022CB ⋋
LeftTriangle; U+022B2 ⊲
LeftTriangleBar; U+029CF ⧏
LeftTriangleEqual; U+022B4 ⊴
LeftUpDownVector; U+02951 âĨ‘
LeftUpTeeVector; U+02960 âĨ 
LeftUpVector; U+021BF â†ŋ
LeftUpVectorBar; U+02958 âĨ˜
LeftVector; U+021BC â†ŧ
LeftVectorBar; U+02952 âĨ’
lEg; U+02A8B âĒ‹
leg; U+022DA ⋚
leq; U+02264 ≤
leqq; U+02266 â‰Ļ
leqslant; U+02A7D âŠŊ
les; U+02A7D âŠŊ
lescc; U+02AA8 âǍ
lesdot; U+02A7F âŠŋ
lesdoto; U+02A81 âǁ
lesdotor; U+02A83 âǃ
lesg; U+022DA U+0FE00 â‹šī¸€
lesges; U+02A93 âĒ“
lessapprox; U+02A85 âĒ…
lessdot; U+022D6 ⋖
lesseqgtr; U+022DA ⋚
lesseqqgtr; U+02A8B âĒ‹
LessEqualGreater; U+022DA ⋚
LessFullEqual; U+02266 â‰Ļ
LessGreater; U+02276 â‰ļ
lessgtr; U+02276 â‰ļ
LessLess; U+02AA1 âĒĄ
lesssim; U+02272 ≲
LessSlantEqual; U+02A7D âŠŊ
LessTilde; U+02272 ≲
lfisht; U+0297C âĨŧ
lfloor; U+0230A ⌊
Lfr; U+1D50F 𝔏
lfr; U+1D529 𝔩
lg; U+02276 â‰ļ
lgE; U+02A91 âĒ‘
lHar; U+02962 âĨĸ
lhard; U+021BD â†Ŋ
lharu; U+021BC â†ŧ
lharul; U+0296A âĨĒ
lhblk; U+02584 ▄
LJcy; U+00409 Љ
ljcy; U+00459 Ņ™
Ll; U+022D8 ⋘
ll; U+0226A â‰Ē
llarr; U+021C7 ⇇
llcorner; U+0231E ⌞
Lleftarrow; U+021DA ⇚
llhard; U+0296B âĨĢ
lltri; U+025FA â—ē
Lmidot; U+0013F Äŋ
lmidot; U+00140 ŀ
lmoust; U+023B0 ⎰
lmoustache; U+023B0 ⎰
lnap; U+02A89 âlj
lnapprox; U+02A89 âlj
lnE; U+02268 ≨
lne; U+02A87 âLJ
lneq; U+02A87 âLJ
lneqq; U+02268 ≨
lnsim; U+022E6 â‹Ļ
loang; U+027EC âŸŦ
loarr; U+021FD â‡Ŋ
lobrk; U+027E6 âŸĻ
LongLeftArrow; U+027F5 âŸĩ
Longleftarrow; U+027F8 ⟸
longleftarrow; U+027F5 âŸĩ
LongLeftRightArrow; U+027F7 ⟷
Longleftrightarrow; U+027FA âŸē
longleftrightarrow; U+027F7 ⟷
longmapsto; U+027FC âŸŧ
LongRightArrow; U+027F6 âŸļ
Longrightarrow; U+027F9 ⟹
longrightarrow; U+027F6 âŸļ
looparrowleft; U+021AB â†Ģ
looparrowright; U+021AC â†Ŧ
lopar; U+02985 âĻ…
Lopf; U+1D543 𝕃
lopf; U+1D55D 𝕝
loplus; U+02A2D ⨭
lotimes; U+02A34 ⨴
lowast; U+02217 ∗
lowbar; U+0005F _
LowerLeftArrow; U+02199 ↙
LowerRightArrow; U+02198 ↘
loz; U+025CA ◊
lozenge; U+025CA ◊
lozf; U+029EB â§Ģ
lpar; U+00028 (
lparlt; U+02993 âĻ“
lrarr; U+021C6 ⇆
lrcorner; U+0231F ⌟
lrhar; U+021CB ⇋
lrhard; U+0296D âĨ­
lrm; U+0200E ‎
lrtri; U+022BF âŠŋ
lsaquo; U+02039 ‹
Lscr; U+02112 ℒ
lscr; U+1D4C1 𝓁
Lsh; U+021B0 ↰
lsh; U+021B0 ↰
lsim; U+02272 ≲
lsime; U+02A8D âĒ
lsimg; U+02A8F âĒ
lsqb; U+0005B [
lsquo; U+02018 ‘
lsquor; U+0201A ‚
Lstrok; U+00141 Ł
lstrok; U+00142 ł
LT; U+0003C <
LT U+0003C <
Lt; U+0226A â‰Ē
lt; U+0003C <
lt U+0003C <
ltcc; U+02AA6 âĒĻ
ltcir; U+02A79 ⊚
ltdot; U+022D6 ⋖
lthree; U+022CB ⋋
ltimes; U+022C9 ⋉
ltlarr; U+02976 âĨļ
ltquest; U+02A7B âŠģ
ltri; U+025C3 ◃
ltrie; U+022B4 ⊴
ltrif; U+025C2 ◂
ltrPar; U+02996 âĻ–
lurdshar; U+0294A âĨŠ
luruhar; U+02966 âĨĻ
lvertneqq; U+02268 U+0FE00 â‰¨ī¸€
lvnE; U+02268 U+0FE00 â‰¨ī¸€
macr; U+000AF ¯
macr U+000AF ¯
male; U+02642 ♂
malt; U+02720 ✠
maltese; U+02720 ✠
Map; U+02905 ⤅
map; U+021A6 â†Ļ
mapsto; U+021A6 â†Ļ
mapstodown; U+021A7 ↧
mapstoleft; U+021A4 ↤
mapstoup; U+021A5 â†Ĩ
marker; U+025AE ▮
mcomma; U+02A29 ⨊
Mcy; U+0041C М
mcy; U+0043C Đŧ
mdash; U+02014 —
mDDot; U+0223A âˆē
measuredangle; U+02221 ∥
MediumSpace; U+0205F  
Mellintrf; U+02133 â„ŗ
Mfr; U+1D510 𝔐
mfr; U+1D52A đ”Ē
mho; U+02127 ℧
micro; U+000B5 Âĩ
micro U+000B5 Âĩ
mid; U+02223 âˆŖ
midast; U+0002A *
midcir; U+02AF0 â̰
middot; U+000B7 ¡
middot U+000B7 ¡
minus; U+02212 −
minusb; U+0229F ⊟
minusd; U+02238 ∸
minusdu; U+02A2A â¨Ē
MinusPlus; U+02213 ∓
mlcp; U+02ADB âĢ›
mldr; U+02026 â€Ļ
mnplus; U+02213 ∓
models; U+022A7 ⊧
Mopf; U+1D544 𝕄
mopf; U+1D55E 𝕞
mp; U+02213 ∓
Mscr; U+02133 â„ŗ
mscr; U+1D4C2 𝓂
mstpos; U+0223E ∞
Mu; U+0039C Μ
mu; U+003BC Îŧ
multimap; U+022B8 ⊸
mumap; U+022B8 ⊸
nabla; U+02207 ∇
Nacute; U+00143 Ń
nacute; U+00144 ń
nang; U+02220 U+020D2 ∠⃒
nap; U+02249 ≉
napE; U+02A70 U+00338 âŠ°Ė¸
napid; U+0224B U+00338 â‰‹Ė¸
napos; U+00149 ʼn
napprox; U+02249 ≉
natur; U+0266E ♮
natural; U+0266E ♮
naturals; U+02115 ℕ
nbsp; U+000A0  
nbsp U+000A0  
nbump; U+0224E U+00338 â‰ŽĖ¸
nbumpe; U+0224F U+00338 â‰Ė¸
ncap; U+02A43 ⊃
Ncaron; U+00147 Ň
ncaron; U+00148 ň
Ncedil; U+00145 Ņ
ncedil; U+00146 ņ
ncong; U+02247 ≇
ncongdot; U+02A6D U+00338 âŠ­Ė¸
ncup; U+02A42 ⩂
Ncy; U+0041D Н
ncy; U+0043D ĐŊ
ndash; U+02013 –
ne; U+02260 ≠
nearhk; U+02924 ⤤
neArr; U+021D7 ⇗
nearr; U+02197 ↗
nearrow; U+02197 ↗
nedot; U+02250 U+00338 â‰Ė¸
NegativeMediumSpace; U+0200B ​
NegativeThickSpace; U+0200B ​
NegativeThinSpace; U+0200B ​
NegativeVeryThinSpace; U+0200B ​
nequiv; U+02262 â‰ĸ
nesear; U+02928 ⤨
nesim; U+02242 U+00338 â‰‚Ė¸
NestedGreaterGreater; U+0226B â‰Ģ
NestedLessLess; U+0226A â‰Ē
NewLine; U+0000A ␊
nexist; U+02204 ∄
nexists; U+02204 ∄
Nfr; U+1D511 𝔑
nfr; U+1D52B đ”Ģ
ngE; U+02267 U+00338 â‰§Ė¸
nge; U+02271 ≱
ngeq; U+02271 ≱
ngeqq; U+02267 U+00338 â‰§Ė¸
ngeqslant; U+02A7E U+00338 âŠžĖ¸
nges; U+02A7E U+00338 âŠžĖ¸
nGg; U+022D9 U+00338 â‹™Ė¸
ngsim; U+02275 â‰ĩ
nGt; U+0226B U+020D2 â‰Ģ⃒
ngt; U+0226F ≯
ngtr; U+0226F ≯
nGtv; U+0226B U+00338 â‰Ģˏ
nhArr; U+021CE ⇎
nharr; U+021AE ↮
nhpar; U+02AF2 â̞
ni; U+0220B ∋
nis; U+022FC â‹ŧ
nisd; U+022FA â‹ē
niv; U+0220B ∋
NJcy; U+0040A Њ
njcy; U+0045A Қ
nlArr; U+021CD ⇍
nlarr; U+0219A ↚
nldr; U+02025 â€Ĩ
nlE; U+02266 U+00338 â‰Ļˏ
nle; U+02270 ≰
nLeftarrow; U+021CD ⇍
nleftarrow; U+0219A ↚
nLeftrightarrow; U+021CE ⇎
nleftrightarrow; U+021AE ↮
nleq; U+02270 ≰
nleqq; U+02266 U+00338 â‰Ļˏ
nleqslant; U+02A7D U+00338 âŠŊˏ
nles; U+02A7D U+00338 âŠŊˏ
nless; U+0226E ≮
nLl; U+022D8 U+00338 â‹˜Ė¸
nlsim; U+02274 ≴
nLt; U+0226A U+020D2 â‰Ē⃒
nlt; U+0226E ≮
nltri; U+022EA â‹Ē
nltrie; U+022EC â‹Ŧ
nLtv; U+0226A U+00338 â‰Ēˏ
nmid; U+02224 ∤
NoBreak; U+02060 ⁠
NonBreakingSpace; U+000A0  
Nopf; U+02115 ℕ
nopf; U+1D55F 𝕟
Not; U+02AEC âĢŦ
not; U+000AC ÂŦ
not U+000AC ÂŦ
NotCongruent; U+02262 â‰ĸ
NotCupCap; U+0226D ≭
NotDoubleVerticalBar; U+02226 âˆĻ
NotElement; U+02209 ∉
NotEqual; U+02260 ≠
NotEqualTilde; U+02242 U+00338 â‰‚Ė¸
NotExists; U+02204 ∄
NotGreater; U+0226F ≯
NotGreaterEqual; U+02271 ≱
NotGreaterFullEqual; U+02267 U+00338 â‰§Ė¸
NotGreaterGreater; U+0226B U+00338 â‰Ģˏ
NotGreaterLess; U+02279 ≹
NotGreaterSlantEqual; U+02A7E U+00338 âŠžĖ¸
NotGreaterTilde; U+02275 â‰ĩ
NotHumpDownHump; U+0224E U+00338 â‰ŽĖ¸
NotHumpEqual; U+0224F U+00338 â‰Ė¸
notin; U+02209 ∉
notindot; U+022F5 U+00338 â‹ĩˏ
notinE; U+022F9 U+00338 â‹šĖ¸
notinva; U+02209 ∉
notinvb; U+022F7 ⋷
notinvc; U+022F6 â‹ļ
NotLeftTriangle; U+022EA â‹Ē
NotLeftTriangleBar; U+029CF U+00338 â§Ė¸
NotLeftTriangleEqual; U+022EC â‹Ŧ
NotLess; U+0226E ≮
NotLessEqual; U+02270 ≰
NotLessGreater; U+02278 ≸
NotLessLess; U+0226A U+00338 â‰Ēˏ
NotLessSlantEqual; U+02A7D U+00338 âŠŊˏ
NotLessTilde; U+02274 ≴
NotNestedGreaterGreater; U+02AA2 U+00338 âĒĸˏ
NotNestedLessLess; U+02AA1 U+00338 âĒĄĖ¸
notni; U+0220C ∌
notniva; U+0220C ∌
notnivb; U+022FE ⋾
notnivc; U+022FD â‹Ŋ
NotPrecedes; U+02280 ⊀
NotPrecedesEqual; U+02AAF U+00338 âǝˏ
NotPrecedesSlantEqual; U+022E0 ⋠
NotReverseElement; U+0220C ∌
NotRightTriangle; U+022EB â‹Ģ
NotRightTriangleBar; U+029D0 U+00338 â§Ė¸
NotRightTriangleEqual; U+022ED ⋭
NotSquareSubset; U+0228F U+00338 âŠĖ¸
NotSquareSubsetEqual; U+022E2 â‹ĸ
NotSquareSuperset; U+02290 U+00338 âŠĖ¸
NotSquareSupersetEqual; U+022E3 â‹Ŗ
NotSubset; U+02282 U+020D2 ⊂⃒
NotSubsetEqual; U+02288 ⊈
NotSucceeds; U+02281 ⊁
NotSucceedsEqual; U+02AB0 U+00338 âǰˏ
NotSucceedsSlantEqual; U+022E1 ⋡
NotSucceedsTilde; U+0227F U+00338 â‰ŋˏ
NotSuperset; U+02283 U+020D2 ⊃⃒
NotSupersetEqual; U+02289 ⊉
NotTilde; U+02241 ≁
NotTildeEqual; U+02244 ≄
NotTildeFullEqual; U+02247 ≇
NotTildeTilde; U+02249 ≉
NotVerticalBar; U+02224 ∤
npar; U+02226 âˆĻ
nparallel; U+02226 âˆĻ
nparsl; U+02AFD U+020E5 âĢŊâƒĨ
npart; U+02202 U+00338 âˆ‚Ė¸
npolint; U+02A14 ⨔
npr; U+02280 ⊀
nprcue; U+022E0 ⋠
npre; U+02AAF U+00338 âǝˏ
nprec; U+02280 ⊀
npreceq; U+02AAF U+00338 âǝˏ
nrArr; U+021CF ⇏
nrarr; U+0219B ↛
nrarrc; U+02933 U+00338 â¤ŗĖ¸
nrarrw; U+0219D U+00338 â†Ė¸
nRightarrow; U+021CF ⇏
nrightarrow; U+0219B ↛
nrtri; U+022EB â‹Ģ
nrtrie; U+022ED ⋭
nsc; U+02281 ⊁
nsccue; U+022E1 ⋡
nsce; U+02AB0 U+00338 âǰˏ
Nscr; U+1D4A9 𝒩
nscr; U+1D4C3 𝓃
nshortmid; U+02224 ∤
nshortparallel; U+02226 âˆĻ
nsim; U+02241 ≁
nsime; U+02244 ≄
nsimeq; U+02244 ≄
nsmid; U+02224 ∤
nspar; U+02226 âˆĻ
nsqsube; U+022E2 â‹ĸ
nsqsupe; U+022E3 â‹Ŗ
nsub; U+02284 ⊄
nsubE; U+02AC5 U+00338 â̅ˏ
nsube; U+02288 ⊈
nsubset; U+02282 U+020D2 ⊂⃒
nsubseteq; U+02288 ⊈
nsubseteqq; U+02AC5 U+00338 â̅ˏ
nsucc; U+02281 ⊁
nsucceq; U+02AB0 U+00338 âǰˏ
nsup; U+02285 ⊅
nsupE; U+02AC6 U+00338 â̆ˏ
nsupe; U+02289 ⊉
nsupset; U+02283 U+020D2 ⊃⃒
nsupseteq; U+02289 ⊉
nsupseteqq; U+02AC6 U+00338 â̆ˏ
ntgl; U+02279 ≹
Ntilde; U+000D1 Ñ
Ntilde U+000D1 Ñ
ntilde; U+000F1 Ãą
ntilde U+000F1 Ãą
ntlg; U+02278 ≸
ntriangleleft; U+022EA â‹Ē
ntrianglelefteq; U+022EC â‹Ŧ
ntriangleright; U+022EB â‹Ģ
ntrianglerighteq; U+022ED ⋭
Nu; U+0039D Ν
nu; U+003BD ÎŊ
num; U+00023 #
numero; U+02116 №
numsp; U+02007  
nvap; U+0224D U+020D2 ≍⃒
nVDash; U+022AF ⊯
nVdash; U+022AE ⊮
nvDash; U+022AD ⊭
nvdash; U+022AC âŠŦ
nvge; U+02265 U+020D2 â‰Ĩ⃒
nvgt; U+0003E U+020D2 >⃒
nvHarr; U+02904 ⤄
nvinfin; U+029DE ⧞
nvlArr; U+02902 ⤂
nvle; U+02264 U+020D2 ≤⃒
nvlt; U+0003C U+020D2 <⃒
nvltrie; U+022B4 U+020D2 ⊴⃒
nvrArr; U+02903 ⤃
nvrtrie; U+022B5 U+020D2 âŠĩ⃒
nvsim; U+0223C U+020D2 âˆŧ⃒
nwarhk; U+02923 â¤Ŗ
nwArr; U+021D6 ⇖
nwarr; U+02196 ↖
nwarrow; U+02196 ↖
nwnear; U+02927 ⤧
Oacute; U+000D3 Ó
Oacute U+000D3 Ó
oacute; U+000F3 Ãŗ
oacute U+000F3 Ãŗ
oast; U+0229B ⊛
ocir; U+0229A ⊚
Ocirc; U+000D4 Ô
Ocirc U+000D4 Ô
ocirc; U+000F4 ô
ocirc U+000F4 ô
Ocy; U+0041E О
ocy; U+0043E Đž
odash; U+0229D ⊝
Odblac; U+00150 Ő
odblac; U+00151 ő
odiv; U+02A38 ⨸
odot; U+02299 ⊙
odsold; U+029BC âĻŧ
OElig; U+00152 Œ
oelig; U+00153 œ
ofcir; U+029BF âĻŋ
Ofr; U+1D512 𝔒
ofr; U+1D52C đ”Ŧ
ogon; U+002DB ˛
Ograve; U+000D2 Ò
Ograve U+000D2 Ò
ograve; U+000F2 Ã˛
ograve U+000F2 Ã˛
ogt; U+029C1 ⧁
ohbar; U+029B5 âĻĩ
ohm; U+003A9 Ί
oint; U+0222E ∎
olarr; U+021BA â†ē
olcir; U+029BE âĻž
olcross; U+029BB âĻģ
oline; U+0203E ‾
olt; U+029C0 ⧀
Omacr; U+0014C Ō
omacr; U+0014D ō
Omega; U+003A9 Ί
omega; U+003C9 Ή
Omicron; U+0039F Ο
omicron; U+003BF Îŋ
omid; U+029B6 âĻļ
ominus; U+02296 ⊖
Oopf; U+1D546 𝕆
oopf; U+1D560 𝕠
opar; U+029B7 âώ
OpenCurlyDoubleQuote; U+0201C “
OpenCurlyQuote; U+02018 ‘
operp; U+029B9 âĻš
oplus; U+02295 ⊕
Or; U+02A54 ⩔
or; U+02228 ∨
orarr; U+021BB â†ģ
ord; U+02A5D ⊝
order; U+02134 ℴ
orderof; U+02134 ℴ
ordf; U+000AA ÂĒ
ordf U+000AA ÂĒ
ordm; U+000BA Âē
ordm U+000BA Âē
origof; U+022B6 âŠļ
oror; U+02A56 ⩖
orslope; U+02A57 ⩗
orv; U+02A5B ⩛
oS; U+024C8 Ⓢ
Oscr; U+1D4AA đ’Ē
oscr; U+02134 ℴ
Oslash; U+000D8 Ø
Oslash U+000D8 Ø
oslash; U+000F8 ø
oslash U+000F8 ø
osol; U+02298 ⊘
Otilde; U+000D5 Õ
Otilde U+000D5 Õ
otilde; U+000F5 Ãĩ
otilde U+000F5 Ãĩ
Otimes; U+02A37 ⨡
otimes; U+02297 ⊗
otimesas; U+02A36 â¨ļ
Ouml; U+000D6 Ö
Ouml U+000D6 Ö
ouml; U+000F6 Ãļ
ouml U+000F6 Ãļ
ovbar; U+0233D âŒŊ
OverBar; U+0203E ‾
OverBrace; U+023DE ⏞
OverBracket; U+023B4 ⎴
OverParenthesis; U+023DC ⏜
par; U+02225 âˆĨ
para; U+000B6 Âļ
para U+000B6 Âļ
parallel; U+02225 âˆĨ
parsim; U+02AF3 âĢŗ
parsl; U+02AFD âĢŊ
part; U+02202 ∂
PartialD; U+02202 ∂
Pcy; U+0041F П
pcy; U+0043F Đŋ
percnt; U+00025 %
period; U+0002E .
permil; U+02030 ‰
perp; U+022A5 âŠĨ
pertenk; U+02031 ‱
Pfr; U+1D513 𝔓
pfr; U+1D52D 𝔭
Phi; U+003A6 ÎĻ
phi; U+003C6 Ά
phiv; U+003D5 Ī•
phmmat; U+02133 â„ŗ
phone; U+0260E ☎
Pi; U+003A0 Π
pi; U+003C0 ΀
pitchfork; U+022D4 ⋔
piv; U+003D6 Ī–
planck; U+0210F ℏ
planckh; U+0210E ℎ
plankv; U+0210F ℏ
plus; U+0002B +
plusacir; U+02A23 â¨Ŗ
plusb; U+0229E ⊞
pluscir; U+02A22 â¨ĸ
plusdo; U+02214 ∔
plusdu; U+02A25 â¨Ĩ
pluse; U+02A72 ⊲
PlusMinus; U+000B1 Âą
plusmn; U+000B1 Âą
plusmn U+000B1 Âą
plussim; U+02A26 â¨Ļ
plustwo; U+02A27 ⨧
pm; U+000B1 Âą
Poincareplane; U+0210C ℌ
pointint; U+02A15 ⨕
Popf; U+02119 ℙ
popf; U+1D561 𝕡
pound; U+000A3 ÂŖ
pound U+000A3 ÂŖ
Pr; U+02ABB âĒģ
pr; U+0227A â‰ē
prap; U+02AB7 âǎ
prcue; U+0227C â‰ŧ
prE; U+02AB3 âĒŗ
pre; U+02AAF âǝ
prec; U+0227A â‰ē
precapprox; U+02AB7 âǎ
preccurlyeq; U+0227C â‰ŧ
Precedes; U+0227A â‰ē
PrecedesEqual; U+02AAF âǝ
PrecedesSlantEqual; U+0227C â‰ŧ
PrecedesTilde; U+0227E ≾
preceq; U+02AAF âǝ
precnapprox; U+02AB9 âĒš
precneqq; U+02AB5 âĒĩ
precnsim; U+022E8 ⋨
precsim; U+0227E ≾
Prime; U+02033 â€ŗ
prime; U+02032 ′
primes; U+02119 ℙ
prnap; U+02AB9 âĒš
prnE; U+02AB5 âĒĩ
prnsim; U+022E8 ⋨
prod; U+0220F ∏
Product; U+0220F ∏
profalar; U+0232E ⌮
profline; U+02312 ⌒
profsurf; U+02313 ⌓
prop; U+0221D ∝
Proportion; U+02237 ∡
Proportional; U+0221D ∝
propto; U+0221D ∝
prsim; U+0227E ≾
prurel; U+022B0 ⊰
Pscr; U+1D4AB đ’Ģ
pscr; U+1D4C5 𝓅
Psi; U+003A8 Ψ
psi; U+003C8 Έ
puncsp; U+02008  
Qfr; U+1D514 𝔔
qfr; U+1D52E 𝔮
qint; U+02A0C ⨌
Qopf; U+0211A ℚ
qopf; U+1D562 đ•ĸ
qprime; U+02057 ⁗
Qscr; U+1D4AC đ’Ŧ
qscr; U+1D4C6 𝓆
quaternions; U+0210D ℍ
quatint; U+02A16 ⨖
quest; U+0003F ?
questeq; U+0225F ≟
QUOT; U+00022 "
QUOT U+00022 "
quot; U+00022 "
quot U+00022 "
rAarr; U+021DB ⇛
race; U+0223D U+00331 âˆŊĖą
Racute; U+00154 Ŕ
racute; U+00155 ŕ
radic; U+0221A √
raemptyv; U+029B3 âĻŗ
Rang; U+027EB âŸĢ
rang; U+027E9 ⟩
rangd; U+02992 âĻ’
range; U+029A5 âĻĨ
rangle; U+027E9 ⟩
raquo; U+000BB Âģ
raquo U+000BB Âģ
Rarr; U+021A0 ↠
rArr; U+021D2 ⇒
rarr; U+02192 →
rarrap; U+02975 âĨĩ
rarrb; U+021E5 â‡Ĩ
rarrbfs; U+02920 ⤠
rarrc; U+02933 â¤ŗ
rarrfs; U+0291E ⤞
rarrhk; U+021AA â†Ē
rarrlp; U+021AC â†Ŧ
rarrpl; U+02945 âĨ…
rarrsim; U+02974 âĨ´
Rarrtl; U+02916 ⤖
rarrtl; U+021A3 â†Ŗ
rarrw; U+0219D ↝
rAtail; U+0291C ⤜
ratail; U+0291A ⤚
ratio; U+02236 âˆļ
rationals; U+0211A ℚ
RBarr; U+02910 ⤐
rBarr; U+0290F ⤏
rbarr; U+0290D ⤍
rbbrk; U+02773 âŗ
rbrace; U+0007D }
rbrack; U+0005D ]
rbrke; U+0298C âό
rbrksld; U+0298E âĻŽ
rbrkslu; U+02990 âϐ
Rcaron; U+00158 Ř
rcaron; U+00159 ř
Rcedil; U+00156 Ŗ
rcedil; U+00157 ŗ
rceil; U+02309 ⌉
rcub; U+0007D }
Rcy; U+00420 Đ 
rcy; U+00440 Ҁ
rdca; U+02937 ⤡
rdldhar; U+02969 âĨŠ
rdquo; U+0201D ”
rdquor; U+0201D ”
rdsh; U+021B3 â†ŗ
Re; U+0211C ℜ
real; U+0211C ℜ
realine; U+0211B ℛ
realpart; U+0211C ℜ
reals; U+0211D ℝ
rect; U+025AD ▭
REG; U+000AE ÂŽ
REG U+000AE ÂŽ
reg; U+000AE ÂŽ
reg U+000AE ÂŽ
ReverseElement; U+0220B ∋
ReverseEquilibrium; U+021CB ⇋
ReverseUpEquilibrium; U+0296F âĨ¯
rfisht; U+0297D âĨŊ
rfloor; U+0230B ⌋
Rfr; U+0211C ℜ
rfr; U+1D52F đ”¯
rHar; U+02964 âĨ¤
rhard; U+021C1 ⇁
rharu; U+021C0 ⇀
rharul; U+0296C âĨŦ
Rho; U+003A1 ÎĄ
rho; U+003C1 ΁
rhov; U+003F1 Īą
RightAngleBracket; U+027E9 ⟩
RightArrow; U+02192 →
Rightarrow; U+021D2 ⇒
rightarrow; U+02192 →
RightArrowBar; U+021E5 â‡Ĩ
RightArrowLeftArrow; U+021C4 ⇄
rightarrowtail; U+021A3 â†Ŗ
RightCeiling; U+02309 ⌉
RightDoubleBracket; U+027E7 ⟧
RightDownTeeVector; U+0295D âĨ
RightDownVector; U+021C2 ⇂
RightDownVectorBar; U+02955 âĨ•
RightFloor; U+0230B ⌋
rightharpoondown; U+021C1 ⇁
rightharpoonup; U+021C0 ⇀
rightleftarrows; U+021C4 ⇄
rightleftharpoons; U+021CC ⇌
rightrightarrows; U+021C9 ⇉
rightsquigarrow; U+0219D ↝
RightTee; U+022A2 âŠĸ
RightTeeArrow; U+021A6 â†Ļ
RightTeeVector; U+0295B âĨ›
rightthreetimes; U+022CC ⋌
RightTriangle; U+022B3 âŠŗ
RightTriangleBar; U+029D0 ⧐
RightTriangleEqual; U+022B5 âŠĩ
RightUpDownVector; U+0294F âĨ
RightUpTeeVector; U+0295C âĨœ
RightUpVector; U+021BE ↾
RightUpVectorBar; U+02954 âĨ”
RightVector; U+021C0 ⇀
RightVectorBar; U+02953 âĨ“
ring; U+002DA ˚
risingdotseq; U+02253 ≓
rlarr; U+021C4 ⇄
rlhar; U+021CC ⇌
rlm; U+0200F ‏
rmoust; U+023B1 ⎱
rmoustache; U+023B1 ⎱
rnmid; U+02AEE âĢŽ
roang; U+027ED ⟭
roarr; U+021FE ⇾
robrk; U+027E7 ⟧
ropar; U+02986 âφ
Ropf; U+0211D ℝ
ropf; U+1D563 đ•Ŗ
roplus; U+02A2E ⨎
rotimes; U+02A35 â¨ĩ
RoundImplies; U+02970 âĨ°
rpar; U+00029 )
rpargt; U+02994 âĻ”
rppolint; U+02A12 ⨒
rrarr; U+021C9 ⇉
Rrightarrow; U+021DB ⇛
rsaquo; U+0203A â€ē
Rscr; U+0211B ℛ
rscr; U+1D4C7 𝓇
Rsh; U+021B1 ↱
rsh; U+021B1 ↱
rsqb; U+0005D ]
rsquo; U+02019 ’
rsquor; U+02019 ’
rthree; U+022CC ⋌
rtimes; U+022CA ⋊
rtri; U+025B9 ▹
rtrie; U+022B5 âŠĩ
rtrif; U+025B8 ▸
rtriltri; U+029CE ⧎
RuleDelayed; U+029F4 â§´
ruluhar; U+02968 âĨ¨
rx; U+0211E ℞
Sacute; U+0015A Ś
sacute; U+0015B ś
sbquo; U+0201A ‚
Sc; U+02ABC âĒŧ
sc; U+0227B â‰ģ
scap; U+02AB8 âǏ
Scaron; U+00160 Å 
scaron; U+00161 ÅĄ
sccue; U+0227D â‰Ŋ
scE; U+02AB4 âĒ´
sce; U+02AB0 âǰ
Scedil; U+0015E Ş
scedil; U+0015F ş
Scirc; U+0015C Ŝ
scirc; U+0015D ŝ
scnap; U+02ABA âĒē
scnE; U+02AB6 âĒļ
scnsim; U+022E9 ⋩
scpolint; U+02A13 ⨓
scsim; U+0227F â‰ŋ
Scy; U+00421 ĐĄ
scy; U+00441 ҁ
sdot; U+022C5 ⋅
sdotb; U+022A1 ⊡
sdote; U+02A66 âŠĻ
searhk; U+02925 â¤Ĩ
seArr; U+021D8 ⇘
searr; U+02198 ↘
searrow; U+02198 ↘
sect; U+000A7 §
sect U+000A7 §
semi; U+0003B ;
seswar; U+02929 ⤊
setminus; U+02216 ∖
setmn; U+02216 ∖
sext; U+02736 âœļ
Sfr; U+1D516 𝔖
sfr; U+1D530 𝔰
sfrown; U+02322 âŒĸ
sharp; U+0266F ♯
SHCHcy; U+00429 ĐŠ
shchcy; U+00449 ҉
SHcy; U+00428 Ш
shcy; U+00448 ҈
ShortDownArrow; U+02193 ↓
ShortLeftArrow; U+02190 ←
shortmid; U+02223 âˆŖ
shortparallel; U+02225 âˆĨ
ShortRightArrow; U+02192 →
ShortUpArrow; U+02191 ↑
shy; U+000AD ­
shy U+000AD ­
Sigma; U+003A3 ÎŖ
sigma; U+003C3 ΃
sigmaf; U+003C2 Ī‚
sigmav; U+003C2 Ī‚
sim; U+0223C âˆŧ
simdot; U+02A6A âŠĒ
sime; U+02243 ≃
simeq; U+02243 ≃
simg; U+02A9E âĒž
simgE; U+02AA0 âĒ 
siml; U+02A9D âĒ
simlE; U+02A9F âǟ
simne; U+02246 ≆
simplus; U+02A24 ⨤
simrarr; U+02972 âĨ˛
slarr; U+02190 ←
SmallCircle; U+02218 ∘
smallsetminus; U+02216 ∖
smashp; U+02A33 â¨ŗ
smeparsl; U+029E4 ⧤
smid; U+02223 âˆŖ
smile; U+02323 âŒŖ
smt; U+02AAA âĒĒ
smte; U+02AAC âĒŦ
smtes; U+02AAC U+0FE00 âĒŦ
SOFTcy; U+0042C ĐŦ
softcy; U+0044C Ҍ
sol; U+0002F /
solb; U+029C4 ⧄
solbar; U+0233F âŒŋ
Sopf; U+1D54A 𝕊
sopf; U+1D564 𝕤
spades; U+02660 ♠
spadesuit; U+02660 ♠
spar; U+02225 âˆĨ
sqcap; U+02293 ⊓
sqcaps; U+02293 U+0FE00 âŠ“ī¸€
sqcup; U+02294 ⊔
sqcups; U+02294 U+0FE00 âŠ”ī¸€
Sqrt; U+0221A √
sqsub; U+0228F ⊏
sqsube; U+02291 ⊑
sqsubset; U+0228F ⊏
sqsubseteq; U+02291 ⊑
sqsup; U+02290 ⊐
sqsupe; U+02292 ⊒
sqsupset; U+02290 ⊐
sqsupseteq; U+02292 ⊒
squ; U+025A1 □
Square; U+025A1 □
square; U+025A1 □
SquareIntersection; U+02293 ⊓
SquareSubset; U+0228F ⊏
SquareSubsetEqual; U+02291 ⊑
SquareSuperset; U+02290 ⊐
SquareSupersetEqual; U+02292 ⊒
SquareUnion; U+02294 ⊔
squarf; U+025AA â–Ē
squf; U+025AA â–Ē
srarr; U+02192 →
Sscr; U+1D4AE 𝒮
sscr; U+1D4C8 𝓈
ssetmn; U+02216 ∖
ssmile; U+02323 âŒŖ
sstarf; U+022C6 ⋆
Star; U+022C6 ⋆
star; U+02606 ☆
starf; U+02605 ★
straightepsilon; U+003F5 Īĩ
straightphi; U+003D5 Ī•
strns; U+000AF ¯
Sub; U+022D0 ⋐
sub; U+02282 ⊂
subdot; U+02ABD âĒŊ
subE; U+02AC5 âĢ…
sube; U+02286 ⊆
subedot; U+02AC3 ẫ
submult; U+02AC1 ấ
subnE; U+02ACB âĢ‹
subne; U+0228A ⊊
subplus; U+02ABF âĒŋ
subrarr; U+02979 âĨš
Subset; U+022D0 ⋐
subset; U+02282 ⊂
subseteq; U+02286 ⊆
subseteqq; U+02AC5 âĢ…
SubsetEqual; U+02286 ⊆
subsetneq; U+0228A ⊊
subsetneqq; U+02ACB âĢ‹
subsim; U+02AC7 â̇
subsub; U+02AD5 âĢ•
subsup; U+02AD3 âĢ“
succ; U+0227B â‰ģ
succapprox; U+02AB8 âǏ
succcurlyeq; U+0227D â‰Ŋ
Succeeds; U+0227B â‰ģ
SucceedsEqual; U+02AB0 âǰ
SucceedsSlantEqual; U+0227D â‰Ŋ
SucceedsTilde; U+0227F â‰ŋ
succeq; U+02AB0 âǰ
succnapprox; U+02ABA âĒē
succneqq; U+02AB6 âĒļ
succnsim; U+022E9 ⋩
succsim; U+0227F â‰ŋ
SuchThat; U+0220B ∋
Sum; U+02211 ∑
sum; U+02211 ∑
sung; U+0266A â™Ē
Sup; U+022D1 ⋑
sup; U+02283 ⊃
sup1; U+000B9 š
sup1 U+000B9 š
sup2; U+000B2 ²
sup2 U+000B2 ²
sup3; U+000B3 Âŗ
sup3 U+000B3 Âŗ
supdot; U+02ABE âĒž
supdsub; U+02AD8 â̘
supE; U+02AC6 â̆
supe; U+02287 ⊇
supedot; U+02AC4 âĢ„
Superset; U+02283 ⊃
SupersetEqual; U+02287 ⊇
suphsol; U+027C9 ⟉
suphsub; U+02AD7 âĢ—
suplarr; U+0297B âĨģ
supmult; U+02AC2 âĢ‚
supnE; U+02ACC â̌
supne; U+0228B ⊋
supplus; U+02AC0 âĢ€
Supset; U+022D1 ⋑
supset; U+02283 ⊃
supseteq; U+02287 ⊇
supseteqq; U+02AC6 â̆
supsetneq; U+0228B ⊋
supsetneqq; U+02ACC â̌
supsim; U+02AC8 â̈
supsub; U+02AD4 âĢ”
supsup; U+02AD6 âĢ–
swarhk; U+02926 â¤Ļ
swArr; U+021D9 ⇙
swarr; U+02199 ↙
swarrow; U+02199 ↙
swnwar; U+0292A â¤Ē
szlig; U+000DF ß
szlig U+000DF ß
Tab; U+00009 ␉
target; U+02316 ⌖
Tau; U+003A4 Τ
tau; U+003C4 Ī„
tbrk; U+023B4 ⎴
Tcaron; U+00164 Ť
tcaron; U+00165 ÅĨ
Tcedil; U+00162 Åĸ
tcedil; U+00163 ÅŖ
Tcy; U+00422 Đĸ
tcy; U+00442 Ņ‚
tdot; U+020DB ◌⃛
telrec; U+02315 ⌕
Tfr; U+1D517 𝔗
tfr; U+1D531 𝔱
there4; U+02234 ∴
Therefore; U+02234 ∴
therefore; U+02234 ∴
Theta; U+00398 Θ
theta; U+003B8 θ
thetasym; U+003D1 Ī‘
thetav; U+003D1 Ī‘
thickapprox; U+02248 ≈
thicksim; U+0223C âˆŧ
ThickSpace; U+0205F U+0200A   
thinsp; U+02009  
ThinSpace; U+02009  
thkap; U+02248 ≈
thksim; U+0223C âˆŧ
THORN; U+000DE Þ
THORN U+000DE Þ
thorn; U+000FE Þ
thorn U+000FE Þ
Tilde; U+0223C âˆŧ
tilde; U+002DC ˜
TildeEqual; U+02243 ≃
TildeFullEqual; U+02245 ≅
TildeTilde; U+02248 ≈
times; U+000D7 ×
times U+000D7 ×
timesb; U+022A0 ⊠
timesbar; U+02A31 ⨹
timesd; U+02A30 ⨰
tint; U+0222D ∭
toea; U+02928 ⤨
top; U+022A4 ⊤
topbot; U+02336 âŒļ
topcir; U+02AF1 âĢą
Topf; U+1D54B 𝕋
topf; U+1D565 đ•Ĩ
topfork; U+02ADA â̚
tosa; U+02929 ⤊
tprime; U+02034 ‴
TRADE; U+02122 â„ĸ
trade; U+02122 â„ĸ
triangle; U+025B5 â–ĩ
triangledown; U+025BF â–ŋ
triangleleft; U+025C3 ◃
trianglelefteq; U+022B4 ⊴
triangleq; U+0225C ≜
triangleright; U+025B9 ▹
trianglerighteq; U+022B5 âŠĩ
tridot; U+025EC â—Ŧ
trie; U+0225C ≜
triminus; U+02A3A â¨ē
TripleDot; U+020DB ◌⃛
triplus; U+02A39 ⨚
trisb; U+029CD ⧍
tritime; U+02A3B â¨ģ
trpezium; U+023E2 âĸ
Tscr; U+1D4AF đ’¯
tscr; U+1D4C9 𝓉
TScy; U+00426 ĐĻ
tscy; U+00446 ҆
TSHcy; U+0040B Ћ
tshcy; U+0045B Ņ›
Tstrok; U+00166 ÅĻ
tstrok; U+00167 ŧ
twixt; U+0226C â‰Ŧ
twoheadleftarrow; U+0219E ↞
twoheadrightarrow; U+021A0 ↠
Uacute; U+000DA Ú
Uacute U+000DA Ú
uacute; U+000FA Ãē
uacute U+000FA Ãē
Uarr; U+0219F ↟
uArr; U+021D1 ⇑
uarr; U+02191 ↑
Uarrocir; U+02949 âĨ‰
Ubrcy; U+0040E Ў
ubrcy; U+0045E Ņž
Ubreve; U+0016C ÅŦ
ubreve; U+0016D Å­
Ucirc; U+000DB Û
Ucirc U+000DB Û
ucirc; U+000FB Ãģ
ucirc U+000FB Ãģ
Ucy; U+00423 ĐŖ
ucy; U+00443 ҃
udarr; U+021C5 ⇅
Udblac; U+00170 Ű
udblac; U+00171 Åą
udhar; U+0296E âĨŽ
ufisht; U+0297E âĨž
Ufr; U+1D518 𝔘
ufr; U+1D532 𝔲
Ugrave; U+000D9 Ù
Ugrave U+000D9 Ù
ugrave; U+000F9 Ú
ugrave U+000F9 Ú
uHar; U+02963 âĨŖ
uharl; U+021BF â†ŋ
uharr; U+021BE ↾
uhblk; U+02580 ▀
ulcorn; U+0231C ⌜
ulcorner; U+0231C ⌜
ulcrop; U+0230F ⌏
ultri; U+025F8 ◸
Umacr; U+0016A ÅĒ
umacr; U+0016B ÅĢ
uml; U+000A8 ¨
uml U+000A8 ¨
UnderBar; U+0005F _
UnderBrace; U+023DF ⏟
UnderBracket; U+023B5 âŽĩ
UnderParenthesis; U+023DD ⏝
Union; U+022C3 ⋃
UnionPlus; U+0228E ⊎
Uogon; U+00172 Ş
uogon; U+00173 Åŗ
Uopf; U+1D54C 𝕌
uopf; U+1D566 đ•Ļ
UpArrow; U+02191 ↑
Uparrow; U+021D1 ⇑
uparrow; U+02191 ↑
UpArrowBar; U+02912 ⤒
UpArrowDownArrow; U+021C5 ⇅
UpDownArrow; U+02195 ↕
Updownarrow; U+021D5 ⇕
updownarrow; U+02195 ↕
UpEquilibrium; U+0296E âĨŽ
upharpoonleft; U+021BF â†ŋ
upharpoonright; U+021BE ↾
uplus; U+0228E ⊎
UpperLeftArrow; U+02196 ↖
UpperRightArrow; U+02197 ↗
Upsi; U+003D2 Ī’
upsi; U+003C5 Ī…
upsih; U+003D2 Ī’
Upsilon; U+003A5 ÎĨ
upsilon; U+003C5 Ī…
UpTee; U+022A5 âŠĨ
UpTeeArrow; U+021A5 â†Ĩ
upuparrows; U+021C8 ⇈
urcorn; U+0231D ⌝
urcorner; U+0231D ⌝
urcrop; U+0230E ⌎
Uring; U+0016E ÅŽ
uring; U+0016F ů
urtri; U+025F9 ◹
Uscr; U+1D4B0 𝒰
uscr; U+1D4CA 𝓊
utdot; U+022F0 ⋰
Utilde; U+00168 Ũ
utilde; U+00169 ÅŠ
utri; U+025B5 â–ĩ
utrif; U+025B4 ▴
uuarr; U+021C8 ⇈
Uuml; U+000DC Ü
Uuml U+000DC Ü
uuml; U+000FC Ãŧ
uuml U+000FC Ãŧ
uwangle; U+029A7 âϧ
vangrt; U+0299C âϜ
varepsilon; U+003F5 Īĩ
varkappa; U+003F0 ΰ
varnothing; U+02205 ∅
varphi; U+003D5 Ī•
varpi; U+003D6 Ī–
varpropto; U+0221D ∝
vArr; U+021D5 ⇕
varr; U+02195 ↕
varrho; U+003F1 Īą
varsigma; U+003C2 Ī‚
varsubsetneq; U+0228A U+0FE00 âŠŠī¸€
varsubsetneqq; U+02ACB U+0FE00 â̋
varsupsetneq; U+0228B U+0FE00 âŠ‹ī¸€
varsupsetneqq; U+02ACC U+0FE00 âĢŒī¸€
vartheta; U+003D1 Ī‘
vartriangleleft; U+022B2 ⊲
vartriangleright; U+022B3 âŠŗ
Vbar; U+02AEB âĢĢ
vBar; U+02AE8 â̍
vBarv; U+02AE9 âĢŠ
Vcy; U+00412 В
vcy; U+00432 в
VDash; U+022AB âŠĢ
Vdash; U+022A9 ⊩
vDash; U+022A8 ⊨
vdash; U+022A2 âŠĸ
Vdashl; U+02AE6 âĢĻ
Vee; U+022C1 ⋁
vee; U+02228 ∨
veebar; U+022BB âŠģ
veeeq; U+0225A ≚
vellip; U+022EE ⋮
Verbar; U+02016 ‖
verbar; U+0007C |
Vert; U+02016 ‖
vert; U+0007C |
VerticalBar; U+02223 âˆŖ
VerticalLine; U+0007C |
VerticalSeparator; U+02758 ❘
VerticalTilde; U+02240 ≀
VeryThinSpace; U+0200A  
Vfr; U+1D519 𝔙
vfr; U+1D533 đ”ŗ
vltri; U+022B2 ⊲
vnsub; U+02282 U+020D2 ⊂⃒
vnsup; U+02283 U+020D2 ⊃⃒
Vopf; U+1D54D 𝕍
vopf; U+1D567 𝕧
vprop; U+0221D ∝
vrtri; U+022B3 âŠŗ
Vscr; U+1D4B1 𝒱
vscr; U+1D4CB 𝓋
vsubnE; U+02ACB U+0FE00 â̋
vsubne; U+0228A U+0FE00 âŠŠī¸€
vsupnE; U+02ACC U+0FE00 âĢŒī¸€
vsupne; U+0228B U+0FE00 âŠ‹ī¸€
Vvdash; U+022AA âŠĒ
vzigzag; U+0299A âϚ
Wcirc; U+00174 Å´
wcirc; U+00175 Åĩ
wedbar; U+02A5F ⩟
Wedge; U+022C0 ⋀
wedge; U+02227 ∧
wedgeq; U+02259 ≙
weierp; U+02118 ℘
Wfr; U+1D51A 𝔚
wfr; U+1D534 𝔴
Wopf; U+1D54E 𝕎
wopf; U+1D568 𝕨
wp; U+02118 ℘
wr; U+02240 ≀
wreath; U+02240 ≀
Wscr; U+1D4B2 𝒲
wscr; U+1D4CC 𝓌
xcap; U+022C2 ⋂
xcirc; U+025EF ◯
xcup; U+022C3 ⋃
xdtri; U+025BD â–Ŋ
Xfr; U+1D51B 𝔛
xfr; U+1D535 đ”ĩ
xhArr; U+027FA âŸē
xharr; U+027F7 ⟷
Xi; U+0039E Ξ
xi; U+003BE Ξ
xlArr; U+027F8 ⟸
xlarr; U+027F5 âŸĩ
xmap; U+027FC âŸŧ
xnis; U+022FB â‹ģ
xodot; U+02A00 ⨀
Xopf; U+1D54F 𝕏
xopf; U+1D569 𝕩
xoplus; U+02A01 ⨁
xotime; U+02A02 ⨂
xrArr; U+027F9 ⟹
xrarr; U+027F6 âŸļ
Xscr; U+1D4B3 đ’ŗ
xscr; U+1D4CD 𝓍
xsqcup; U+02A06 ⨆
xuplus; U+02A04 ⨄
xutri; U+025B3 â–ŗ
xvee; U+022C1 ⋁
xwedge; U+022C0 ⋀
Yacute; U+000DD Ý
Yacute U+000DD Ý
yacute; U+000FD ÃŊ
yacute U+000FD ÃŊ
YAcy; U+0042F Đ¯
yacy; U+0044F Ņ
Ycirc; U+00176 Åļ
ycirc; U+00177 Ŏ
Ycy; U+0042B ĐĢ
ycy; U+0044B Ņ‹
yen; U+000A5 ÂĨ
yen U+000A5 ÂĨ
Yfr; U+1D51C 𝔜
yfr; U+1D536 đ”ļ
YIcy; U+00407 Ї
yicy; U+00457 Ņ—
Yopf; U+1D550 𝕐
yopf; U+1D56A đ•Ē
Yscr; U+1D4B4 𝒴
yscr; U+1D4CE 𝓎
YUcy; U+0042E ĐŽ
yucy; U+0044E ŅŽ
Yuml; U+00178 Ÿ
yuml; U+000FF Ãŋ
yuml U+000FF Ãŋ
Zacute; U+00179 Åš
zacute; U+0017A Åē
Zcaron; U+0017D ÅŊ
zcaron; U+0017E Åž
Zcy; U+00417 З
zcy; U+00437 С
Zdot; U+0017B Åģ
zdot; U+0017C Åŧ
zeetrf; U+02128 ℨ
ZeroWidthSpace; U+0200B ​
Zeta; U+00396 Ζ
zeta; U+003B6 Îļ
Zfr; U+02128 ℨ
zfr; U+1D537 𝔷
ZHcy; U+00416 Ж
zhcy; U+00436 Đļ
zigrarr; U+021DD ⇝
Zopf; U+02124 ℤ
zopf; U+1D56B đ•Ģ
Zscr; U+1D4B5 đ’ĩ
zscr; U+1D4CF 𝓏
zwj; U+0200D ‍
zwnj; U+0200C ‌

This data is also available as a JSON file.

The glyphs displayed above are non-normative. Refer to Unicode for formal definitions of the characters listed above.

The character reference names originate from XML Entity Definitions for Characters, though only the above is considered normative. [XMLENTITY]

This list is static and will not be expanded or changed in the future.