CHAPTER 6

AppleTalk Transaction Protocol (ATP)

This chapter describes the AppleTalk Transaction Protocol (ATP) that you use to send

a request from one application or process to another that can satisfy the request and
respond to it. Because ATP is transaction-based—that is, the response data is bound to
the request data and the exchange of information is limited to the transaction—you do
not incur the overhead entailed in establishing, maintaining, and breaking a connection
that is associated with connection-oriented protocols, such as ADSP. However, you can
transfer only a limited amount of data using ATP.

You should read this chapter if you want to write an application that requires reliable
delivery of data while allowing one side of the communication to ask the other side to
perform a service and return a small amount of data.

For an overview of ATP and how it fits within the AppleTalk protocol stack, read the
chapter “Introduction to AppleTalk” in this book, which also introduces and defines
some of the terminology used in this chapter. For complete explanation of the ATP
specification, see Inside AppleTalk, second edition.

About ATP

The AppleTalk Transaction Protocol offers a simple, efficient means of transferring
small amounts of data across a network; it lets one network entity request information
of another entity that possesses only the ability to respond to the request. ATP ensures
that data is delivered without error or packet loss.

ATP communication is based on the concept of a transaction: one party, the requester,
makes a request of another party, the responder, to perform a service and return a
response. This discussion uses the term requester to refer to an application that uses ATP
to make a request and responder to refer to an application that uses ATP to respond to

a request.

When it receives a request, the responder application performs the necessary processing
to service it and sends a response message back to the requester, completing the
transaction. The response message can be data that reports the result of the trans-

action or information produced as a result of the processing. Here is how a basic
transaction occurs:

= The requester application calls the .ATP interface, and the .ATP driver on the
requester side sends the request to the .ATP driver on the responder side.

s The .ATP driver on the responder side passes the request to the responder application,
which is listening for incoming .ATP requests.

= The responder application satisfies the request and prepares a response, then calls
the ATP interface to transmit the response via the .ATP driver back to the requester
application.

Figure 6-1 shows this interaction.

About ATP 6-3

(d1Vv) |020101d uonoesuel] yela|ddy n

CHAPTER 6

AppleTalk Transaction Protocol (ATP)

Figure 6-1 An ATP transaction

S

ATP transaction ATP transaction
requester responder
ATP ATP
requesting responding
end end
ATP dialog

The amount of data that a requester application can send is limited to 578 bytes; the
amount of data that a responder application can return is limited to 4624 bytes. The ATP
programming interface includes a function that lets you add one or more single packets
to follow the initial response, up to a total of eight packets including the initial number
of packets sent, if you do not send eight packets in the initial response.

Note

Although you can use the ATP add-response function to extend the
amount of response data, if you intend for your application to transfer
large amounts of data, you should choose a transport protocol other
than ATP. For example, you can use ADSP, which allows you to send
and receive continuous streams of data. O

You can implement applications that use ATP to perform network-based transactions in
the following two ways:

» You can write a single application that handles both the responder and requester
actions of an ATP transaction and run that application on two networked nodes. This
method allows each application to act as either the requester or the responder. The
interaction remains asymmetric; only one side can control the communication during
a single transaction. However, each side has the capacity to initiate a transaction by
sending a request to the other side.

= You can write two distinct applications, one application that implements only the
requester part of a transaction and another application that implements only the
responder side. This scenario lends itself to a client-server model in which many
nodes on a network run the requester application (client), while one or more nodes
run the responder application (server); one server can respond to transaction requests
from various clients.

About ATP

CHAPTER 6

AppleTalk Transaction Protocol (ATP)

ATP is a direct client of DDP, and it adds reliable delivery of data to the transport
delivery services that DDP provides. Figure 6-2 shows ATP and the underlying
protocol stack.

Figure 6-2 ATP and its underlying protocols

T

@E@H@@

LAP Manager

3 |
o
=t

The ATP Packet Format

An ATP packet includes an 8-byte header followed by up to 578 bytes of data. An ATP
packet is preceded by the DDP header that, in turn, is preceded by the data-link header,
referred to as the frame header.

The ATP header contains the following information:

= The first byte consists of control information. Bits within this byte are set to identify
aspects of a request or a response function.

» The second byte contains a bitmap/sequence number. This field is 8 bits wide, and
its use and significance depend on whether the ATP packet is a request packet or a
response packet. For request packets, this field is referred to as the transaction
bitmap, and it identifies the number of buffers that a requester application has
reserved for the response data. For response packets, this field is referred to as the
ATP sequence number, and it is used to identify the sequential position of the
response packet in the complete response message; ATP uses the sequence number
to manage and handle lost or out-of-sequence response packets.

About ATP 6-5

(d1Vv) |020101d uonoesuel] yela|ddy n

CHAPTER 6

AppleTalk Transaction Protocol (ATP)

= The third and fourth bytes carry the transaction ID assigned to a request and used by
the response to that request.

s The fifth through eighth bytes carry user data; an application can use these bytes for
its own purposes, for example, to transfer command information.

The ATP data follows the header. It can consist of from 0 to 578 bytes. An ATP packet is
enclosed in a DDP datagram that is enclosed in a data-link frame. Figure 6-3 shows a
close-up view of the first byte of the ATP header, the control information byte.

Figure 6-3 The ATP packet header control information byte
Supplied
by interface
S
71654 ,3]2]1]0
| \ \
X0 STS Chksum
EOM TID valid
Reserved XCall

The Control Information Byte

ATP applications call response and request functions that generate request and
response packets. (ATP uses the release packet internally.) When set, the bits have
the following meanings:

Bit Meaning

Use the DDP checksum feature for this packet.

ATP has assigned the request transaction ID; the TID field value is now valid.
This request uses an extended parameter block.

To the requester: retransmit the request immediately (send-transmission status).

This is the last packet of the response message (end of message).

Q= W N = O

This request is an exactly-once transaction.

The Bitmap/Sequence Number

ATP ensures reliable delivery of data. This means that ATP retransmits all lost or
dropped packets, and if it is unable to complete a transaction properly, ATP returns an
error as the function result. To receive all the packets that make up a response message,

a requester application must provide enough buffer space to hold the data. A request
message consists of a single packet, while each response message can contain up to eight
response packets.

About ATP

CHAPTER 6

AppleTalk Transaction Protocol (ATP)

Response packets are numbered from 0 to 7. ATP uses the sequence number to manage
the transmission and receipt of response packets; the packet header ATP sequence
number field contains 8 bits, 1 for each response packet.

ATP sets the sequence number in the request header to tell the .ATP driver code on the
responder side which response packets the requester has not received. When a requester
does not receive a complete response message, the .ATP driver code on the responder
side can then send again only the packets that the requester side has not received, based
on the bit settings of the transaction sequence number. ATP handles the retransmission
of data internally without requiring any action on the part of your application. For
information about the buffer records, see “The Buffer Data Structure” on page 6-20.

The Transaction ID

The third and fourth bytes of the ATP header carry a 16-bit transaction ID. The .ATP
driver code on the requester side of a transaction assigns a unique transaction ID to each
request that a requester application makes. The responder application that services the
request includes this number as a parameter to the response call that it issues to send

its response back to the requester. The transaction ID ties together the request and its
response, ensuring that ATP delivers the correct data in response to each request. An
application can issue and have pending multiple concurrent asynchronous requests; ATP
uses the transaction ID to keep track of them.

User Bytes

ATP does not concern itself with the last 4 bytes of the ATP header. They are reserved for
your use. You can use these bytes for any purpose prearranged by the requester and
responder applications. The ATP functions include a parameter that you use to specify
this data.

At-Least-Once and Exactly-Once Transactions

ATP supports two types of transactions: at-least-once transactions and exactly-once
transactions. An at-least-once transactionensures that the responder application
receives every request directed to it at least once. However, this mode allows for the
possibility of a responder application receiving duplicate requests.

For example, when you send a request that the .ATP driver code on the responder side
receives, it passes the request on to the responder application. Your responder applica-
tion then processes the request and creates a response to it. The ATP responder driver
sends that response to your requester application. If the response is lost during the
transmission, ATP retransmits the request after a period of time passes; you can set

a value to control this timeout period. The ATP responder driver code receives the
duplicate request and repeats the cycle of passing it on to your responder application for
processing. At-least-once transactions ensure that the data is delivered at least once, and
possibly more than once. You can use this transaction mode if it does not have adverse
affects on the responder application.

About ATP 6-7

(d1Vv) |020101d uonoesuel] yela|ddy n

6-8

CHAPTER 6

AppleTalk Transaction Protocol (ATP)

An exactly-once transactionensures that the responder application receives a specific
request only once. These are also referred to as XO, as in exactly-once transactions.

To create this result, the ATP responder code saves the response packets until the
transaction is complete. This means that ATP itself can retransmit packets without
requiring that your responder application reprocess the request.

The ATP responder code saves the response packets until the ATP code on the requester
side indicates that it has received all of the packets. The ATP code on the requester side
sends a transaction release packet to the ATP code on the responder side to signal that
the requester application has received all of the response packets, so that ATP can now
release them.

Because the transaction release packet could also be lost during transmission, ATP backs
up this process with a transaction release timer. ATP marks packets saved for retrans-
mission with a timestamp. When a packet ages beyond the amount of time that you set
for the responder’s release timer, ATP discards the packet.

You can set the release timer value that the ATP code on the responder end uses from
your requester application; the send request functions include a release timer parameter
for this purpose. For more information about this parameter, see “PSendRequest” on
page 6-24 or “PNSendRequest” on page 6-27.

The Buffer Data Structure

The responder application needs to provide space to store the data to be sent to the
requester until the requester application has received all of the data. The requester
application needs to provide space to receive the data that it expects to receive as a result
of the transaction. Each response can include up to eight packets. To handle the storage
of these packets, the ATP client application at each end of the transaction provides a
buffer data structure. The buffer data structure is designed to allow ATP to easily
manage reliable transfer of multiple packets belonging to a single response message. A
buffer data structure consists of an array of eight elements, each of which contains a
pointer to a record of type BDSEI enent .

Each record contains a field for the size of the buffer created to hold the data and a
pointer to that buffer. It also contains fields for the size of the data in the response packet
and the user bytes that were passed in the packet header, if these bytes were used to
communicate additional information. You can create your own buffer data structures,

or you can use the ATP utility provided for this purpose. For a description of the BDS
data type, see “The Buffer Data Structure” on page 6-20. For a description of the utility
that you can use to build the buffer data structure, see “BuildBDS” on page 6-44.

ATP Flags

Many of the functions that you use for an ATP transaction pass control information in an
ATP parameter block field called at pFl ags. This field comprises a single byte whose
bits you can set to signal control information, if appropriate. In some cases, ATP sets
these flag bits for its own use. The discussion of each function that uses these flags
includes the control information about the bits specific to that function. Table 6-1 shows
the Pascal and assembly constants defined for these bits.

About ATP

CHAPTER 6

AppleTalk Transaction Protocol (ATP)

Table 6-1 Constants for ATP flag bits

Bit

Pascal Assembly

constant constant Meaning

at pSendChkval ue sendChk Use DDP’s checksum feature when sending a
packet.

at pTl Dval i dval ue tidvalid The transaction ID value that ATP assigns is set;
you can check the r eqTl D field now.

None at pXcal | This exactly-once transaction request uses an
extended parameter block, the last field of which
(TRel Ti ne) is set to the release timer value for
the ATP responder side.

at pSTSval ue at pSTSBi t The ATP requester must retransmit a request
immediately. (ATP sets the send-transmission-
status bit, which it uses internally.)

at pEOWal ue at pEOVBI t The last packet in this response is the end
of the message.

at pXOval ue at pXCBi t This request is an exactly-once transaction.

Using ATP

This section describes how to use ATP to

» send a transaction request to a responder application that is an ATP socket client
= receive a request from an ATP requester application and respond to it
= cancel pending ATP requests and responses

You can write a single ATP application that includes both the responder and requester
code or two ATP applications that separately provide the responder and the requester
services. This section describes how to write a requester application, and then it describes
how to write a responder application.

Writing a Requester ATP Application

You use the PSendRequest function or the PNSendRequest function to send an ATP
request to another socket.

Before you can use ATP, you must first open the MPP driver, which in turn opens the
.ATP driver. Use the Device Manager’s QpenDr i ver function to open the .MPP driver.
Even if you suspect that the .MPP and the .ATP drivers are open, you should call

the OpenDri ver function for the MPP driver to ensure that this is the case. Calling
OpenDri ver for a driver that is already open will not produce harmful repercussions.
See the chapter “Device Manager” in Inside Macintosh: Devices for information on

the OpenDri ver function. Do not close the MPP driver when you are finished using

Using ATP 6-9

(d1Vv) |020101d uonoesuel] yela|ddy n

CHAPTER 6

AppleTalk Transaction Protocol (ATP)

ATP because other applications dependent on it or on the .ATP driver require that it
remain open.

To send an ATP request, follow these steps:

1.

Create a buffer data structure (BDS) to hold the data that you expect to receive in
response to your request. For information on how to do this, see “Creating a Buffer
Data Structure” on page 6-12.

. To allow ATP to assign the socket to be used to send the request, use the

PSendRequest function. To specify a particular socket to be used to send the request,
use the PNSendRequest function; in this case, you must call POpenATPSocket to
first open the socket (see “POpenATPSkt” on page 6-30 for information about this
function). For information on the parameters required for these functions, see
“Specifying the Parameters for the Send Request Function” on page 6-12.

. You can get the transaction ID that ATP assigns to a request from the r eqTl D

parameter; you need this ID to cancel a request. However, before you check this
field, make sure that the valid transaction ID (at pTI DVal i dval ue) bit (bit 1) of
the at pFl ags parameter is set. ATP sets this bit to inform you that it has assigned
a transaction ID and that the r eqTI Dfield is now valid.

. If you opened a socket to be used for the PNSendRequest call, close the socket using

PCl 0seATPSkt . See”PCloseATPSkt” on page 6-31 for information on how to use this
function. If you use the PSendRequest function, ATP allocates a socket and opens
and closes it for you.

The code in Listing 6-1 shows how to open a socket and issue a call to the PSendRequest
function. The code uses the Bui | dBDS function to create a buffer data structure to

hold the response data it expects in response. This segment of code assumes that the
application has already called the QpenDr i ver function to open the MPP and

.ATP drivers.

Listing 6-1 Opening a socket and sending an ATP request

CONST
kMaxPacket Si ze = 578; { maxi mum packet size we can receive}
kNRespBuffs = 8; {you all ow ei ght response buffers}

kQur RespBuf Si ze = kMaxPacket Si ze * kNRespBuff s;

{response buffer size}

VAR
err: OSErr;
reqLengt h: I nt eger;
nBuf s: I nt eger;
ref: I nt eger;
t ar get Addr: Addr Bl ock;
gAt pPBPt 1 : ATPPBPt 1
gReqBuf Ptr: Ptr;

gRespBuf Ptr: Ptr;
gSRespBdsPtr: BDSPtr;

6-10

Using ATP

CHAPTER 6

AppleTalk Transaction Protocol (ATP)

BEG N

gAt pPBPt r : = ATPPBPtr (NewPt r (Si zeOF (ATPPar anBl ock))) ;
gReqBuf Ptr : = NewPtr (kMaxPacket Si ze) ;

gRespBuf Ptr : = NewPtr (kQur RespBuf Si ze) ;

gSRespBdsPtr : = BDSPtr(NewPtr (Si zeO (BDSType)));

err := OpenDriver(' MPP ,ref);

if err <> noErr THEN DoErr(err);

W TH gAt pPBPt r~ DO

BEG N
at pSocket := 0; {dynamically allocate a socket}
addr Bl ock. aNet : = 0; {accept requests from anyone}

addr Bl ock. aNode : = 0;
addr Bl ock. aSocket : =
END;
err := POpenATPSkt (gAt pPBPtr, fal se);{socket is returned in }
{ gAtpPBPtr~. at pSocket}

0;

IF err <> noErr THEN DoErr(err);
| F gAtpPBPtr~. i oResult <> noErr THEN DoErr(err);

MyPr epar eRequest Dat a(gReqBuf Pt r, @ egLengt h) ;
{user routine that prepares the }

{ request data to be sent}
MyLocat eTar get Addr ess(@ ar get Addr) ;

{user routine that |ocates the }
{ target machi ne}

{Set up your BDS structure.}
nBufs : = Buil dBDS(gRespBuf Ptr, Ptr(gSRespBdsPtr), kQur RespBuf Si ze) ;

W TH gAt pPBPt r~ DO

BEG N
at pFl ags : = at pXOval ue; {issue an exactly-once transaction}
addr Bl ock. aNet : = target Addr. aNet;

{set up the target machi ne}
addr Bl ock. aNode : = target Addr. aNode;

addr Bl ock. aSocket := target Addr. aSocket;
reqLength : = reqlLengt h; {size of your request data}
reqPoi nter := gReqBuf Ptr; {pointer to actual request data}
nuntX Buf fs : = nBufs; {nunber of responses expected}
bdsPoi nter := Ptr(gSRespBdsPtr); {your BDS pointer}
ti meCQut Val : = 3; {timeout interval}
retryCount := 5; {nunber of retries}

END;

err := PSendRequest (gAt pPBPtr, fal se);

Using ATP 6-11

(d1Vv) |020101d uonoesuel] yela|ddy n

CHAPTER 6

AppleTalk Transaction Protocol (ATP)

IF err <> noErr THEN DoErr(err);

MyPr ocessResponses(gAt pPBPt r ~. bdsPoi nt er, gAt pPBPt r . numOf Resps) ;

{user routine to process the }
{ response data returned}

{Clean up after you are done.}
Di sposePtr (Ptr(gAt pPBPtr));

Di sposePtr (gReqBuf Ptr);

Di sposePt r (gRespBuf Ptr);

Di sposePtr (Ptr(gSRespBdsPtr));

END.

6-12

Creating a Buffer Data Structure

Response data can comprise up to eight packets. ATP uses the organization of the buffer
data structure (BDS) to manage these packets and ensure their complete delivery. The BDS
must be an array of up to eight elements. You can create the buffer data structure yourself,
or you can use the Bui | dBDS function for this purpose. You pass Bui | dBDS a pointer to a
buffer and the length of the buffer, and it creates up to eight elements, one for each packet,
depending on the size of the buffer that you supply. Bui | dBDS returns as its function
result the number of elements that it creates; you pass this number and a pointer to the
buffer data structure to the PSendRequest or PNSendRequest function that you call to
issue the request. The memory that you allocate for the buffer must be nonrelocatable
until the PSendResponse call completes execution. After PSendResponse returns, you
should release this memory if you do not intend to reuse it.

Specifying the Parameters for the Send Request Function

When you call either the PSendRequest function or the PNSendRequest function to
send an ATP request, you must do these tasks:

= Specify as the value of the addr Bl ock parameter the AppleTalk internet address of
the socket whose client responder application you are sending the request to.

= Specify in the r eqLengt h field the size in bytes of the request and in the r eqPoi nt er
field a pointer to the request data. The buffer that you use to store the request belongs
to ATP until the PSendRequest (or PNSendRequest) function completes execution,
after which you can either reuse the memory or release it.

= Settheti meCut Val and r et ryCount parameters appropriately for your network.
See the following section, “Setting the Timeout and Retry Count Parameters.” If this is
an exactly-once request, set bit 5 (at pXOval ue) of the at pFl ags parameter to ensure
that the responder application receives a specific request only once. For additional
information about exactly-once transactions, see “At-Least-Once and Exactly-Once
Transactions” on page 6-7.

Using ATP

CHAPTER 6

AppleTalk Transaction Protocol (ATP)

You can send up to 4 bytes of additional information in the user Dat a parameter,
and ATP will pass this to the responder application in the user Dat a parameter of its
PCet Request call. To make this parameter meaningful, both the requester and the
responder applications should agree on the use of these additional data bytes that are
separate from the request or response data sent in an ATP transaction.

Setting the Timeout and Retry Count Parameters

When a transaction does not complete on the first transmission, ATP retries it a number
of times. You can control ATP’s retry behavior by setting these two parameters: the

ti meQut Val field and ther et r yCount field. The t i meQut Val value determines

in seconds how long ATP waits before resending the original request packet; the
retryCount value determines how many times ATP retries to send the request.

ATP optimizes how it performs retries based on the response bitmap; ATP on the
requester side resends the request with the header bitmap indicating to the ATP driver
on the responder side which packets it should resend. (See the “The Bitmap /Sequence
Number” on page 6-6 for more information.) ATP makes this request to resend until it
receives all of the packets or it exhausts the number of retry attempts that you specify. If
ATP exhausts all of the retry attempts before the requester side receives all of the
packets, ATP returns an error.

To choose the correct timeout value and retry count combination, you should consider
the speed and complexity of your network—for example, take into account the degree of
traffic congestion and whether your network contains multiple routers. You can use the
AppleTalk Echo Protocol (AEP) echo socket to test the network performance and adjust
the values accordingly. For more information about using the AEP echo socket to test
network performance, see the chapter “Datagram Delivery Protocol (DDP)” in this book.
You can store various pairs of values in a preferences resource file so that you can easily
change them to adapt to the speed of the network.

If you want ATP to retry indefinitely to send the request, you can set the r et r yCount
parameter to 255. In this case, ATP will send the request repeatedly until either the ATP
responder end satisfies the request and sends back a response or you cancel the request.
To cancel a PSendRequest call, you can use either the PKi | | SendReq function or the
PRel TCB function. To cancel a PNSendRequest call, you can use the PKi | | SendReq
function only.

Setting the Release Timer Value

For exactly-once transactions, the ATP responder code saves the response packets until
the ATP code on the requester side indicates that it has received all of them. When this is
the case, the ATP code on the requester side sends a transaction release packet to tell the
ATP code on the responder side to release the response packets. Because this packet
could be dropped or lost during transmission, ATP uses a release timer to discard the
retained packets after a specified amount of time and to release the memory used to
store them.

Using ATP 6-13

(d1Vv) |020101d uonoesuel] yela|ddy n

6-14

CHAPTER 6

AppleTalk Transaction Protocol (ATP)

If the nodes at both ends of the ATP connection are running AppleTalk Phase 2
drivers, you can control the release timer value that determines when ATP releases
the response packets by setting the 3 lower bits of the TRel Ti me parameter to one
of the following values:

Setting of
TRelTime release timer
000 30 seconds
001 1 minute
010 4 minutes
100 8 minutes

Writing a Responder ATP Application

A responder application receives incoming ATP requests, processes them, and sends a
response to the requester application. To write a responder application, you open a
socket that you set up to listen for requests. When you receive a request, you process it
and send a response back to the requester application. The response can consist of a
message reporting the outcome of the processing you performed or data resulting from
the processing.

Before you can use ATP, you must first open the .MPP driver, which in turn opens the
.ATP driver. Use the Device Manager’s OpenbDr i ver function to open the MPP driver.
Even if you suspect that the MPP and the .ATP drivers are open, you should call the
OpenbDri ver function for the MPP driver to ensure that this is the case. Calling

QpenDr i ver for a driver that is already open will not produce harmful repercussions.
See the chapter “Device Manager” in Inside Macintosh: Devices for information on the
OpenDri ver function. Do not close the MPP driver when you are finished using ATP
because other applications dependent on it or the .ATP driver require that it remain open.

Opening and Setting Up a Socket to Receive Requests

To open a socket to receive incoming requests, you use the following procedure:

1. To open the socket, call the POpenATPSkt function, providing it with values as
follows:

o To direct ATP to open a specific socket, provide the number of that socket as the
value of the at pSocket parameter; to allow ATP to dynamically assign a socket,
specify 0 as the value of this field.

o To filter the sockets from which you will accept requests, set the internet socket
address fields of the addr Bl ock parameter; to accept requests from any socket,
set all three fields to 0. You can filter requests based on network, socket, or node
numbers. For example, to accept requests from all sockets on the node whose ID
is 112, you set the network and socket number fields of the address block record to
0 and the node ID field to 112.

Using ATP

CHAPTER 6

AppleTalk Transaction Protocol (ATP)

2. To set up the socket to receive requests, call the PGet Request function, which listens
for an incoming request on the socket you specify. You provide it with the parameter
values as follows:

o Allocate a buffer to store the incoming request; you pass PGet Request a pointer
to this buffer and the length of the buffer. Unless you know the exact size of the
incoming request, allocate at least 578 bytes of nonrelocatable memory for this
buffer to accommodate the maximum request packet size. Set the r eqPoi nt er
parameter to point to the buffer, and set the r eqLengt h parameter to the size in
bytes of the buffer.

o Set the at pSocket parameter to the number of the socket to be used to listen for
the request; this is the socket you opened through the POpenATPSkt call.

o Setthei oConpl eti on parameter. In most cases, you should issue the
PGet Request call asynchronously so that your application can continue execution
while PGet Request listens for an incoming call; the PGet Request function
returns after it receives an incoming request or encounters an error condition. If
you issue this call asynchronously, you must either specify a completion routine or
set the i oConpl et i on parameter to NI L. If you use a completion routine, before it
exits, your completion routine can call the PGet Request function again to listen
for the next incoming request. If you do not use a completion routine, you must
poll the i oResul t field for indication of an incoming request to determine when
the function completes execution and whether an error condition or an incoming
request caused the function to complete. For more information on calling a routine
asynchronously, see the chapter “Introduction to AppleTalk” in this book.

3. Process the values that PGet Request returns. The PGet Request function returns
the following values that may be of use to your application:

o The request transaction ID r eqTI D that ATP assigns to this request. If you intend
to respond to the request, save this value because you will need to pass it to the
PSendResponse function and the PAddResponse function to identify the request
for which the response message is intended. For more information on the trans-
action ID, see the discussion in the section “The ATP Packet Format” beginning on
page 6-5.

o The user Dat a parameter, which contains any additional information that the
requester application has sent. To make this parameter meaningful, both the
requester and the responder applications should agree on the use of these
additional data bytes that are separate from the request or response data sent
in an ATP transaction.

o The exactly-once bit (bit 5) of the at pFl ags parameter, which is set if the request
received is part of an exactly-once transaction. ATP uses this information internally
to ensure that your responder application receives this request only once.

Listing 6-2 on page 6-17 shows how to open a socket and issue a call to the PGet Request
function to receive requests.

Using ATP 6-15

(d1Vv) |020101d uonoesuel] yela|ddy n

6-16

CHAPTER 6

AppleTalk Transaction Protocol (ATP)

Responding to Requests

After you process a request and create a response message, you call the PSendResponse
function to send the response. ATP assembles the response packets into a message and
returns them to the requester application. You can send the request through the same
socket that you use to receive incoming requests, or you can specify a different socket to
be used for this purpose. To use a different socket, you must first open the socket by
calling POpenATPSocket . The code in Listing 6-2 opens a new socket that it uses to
send the response.

1. Create a buffer data structure to hold the response data that you want to send.

The buffer data structure (BDS) must be an array of up to eight elements. You can use
the Bui | dBDS function to create the BDS. You pass Bui | dBDS a pointer to a buffer
and the length of the buffer, and it creates up to eight elements depending on the size
of the buffer that you supply. Bui | dBDS returns as its function result the number of
elements that it creates; you pass this number and a pointer to the buffer data
structure to the PSendResponse call. The memory that you allocate for the buffer
must be nonrelocatable until the PSendResponse call completes execution. After
PSendResponse returns, you should release this memory.

2. To send the response, call the PSendResponse function. The response data cannot
exceed 4624 bytes. If you need to send more information, you can follow the
PSendResponse function with one or more calls to the PAddResponse function
until you have sent a total of eight packets, including the packets that you sent
when you called the PSendResponse function; each time you call the PAddResponse
function, you can send one additional packet consisting of 578 bytes of data.

o For the input address block (addr Bl ock) and transaction ID (t r ans| D)
parameters to PSendResponse, use the address block (addr Bl ock) and
request transaction ID (r eqTI D) parameter values that the PGet Request
function returned.

o Set the nunf Buf f s field to the number of response packets that you are sending.
If you are sending fewer packets than the requester expects to receive, you must set
the end-of-message (at pEOWal ue) bit (bit 4) in the at pFl ags field to indicate
that the last packet is the final one in the response message. The bitmap returned
by the PCet Request function indicates the number of packets that the requester
expects in response.

o Set the at pSocket field to the number of the socket that you are using to send
the response.

3. Call the Ol 0seATPSkt function to close the socket that you opened to receive
requests and respond to them after you are finished with this socket. You can use
the socket to continue to listen for requests until your application completes
execution, but you should explicitly close the socket before exiting the program.

The code in Listing 6-2 first shows how to open a socket and issue a call to the
PGet Request function to receive requests. Then it shows how to prepare the
response data and send it.

Using ATP

CHAPTER 6

AppleTalk Transaction Protocol (ATP)

Listing 6-2

CONST
kMaxPacket Si ze

kMaxResponses = 8;

kRespBuf Si ze =

VAR
err:
NunOf Buf s:
ref:
nBuf s:
ReqBi t Map:
thisBit:
gAt pPBPt 1 :
gSendRespPBPt r:
gGet ReqBuf Pt r:
gSRespBuf :
gSRespBdsPtr:
BEG N
gAt pPBPt r
gSendRespPBPt r
gCet ReqBuf Pt r

Opening a socket to receive a request and sending response data

= 578; {maxi mum packet size you can receive}

{ maxi mum nunber of responses to expect}
kMaxPacket Si ze * kMaxResponses;

{your response buffer}

OSErr;

I nt eger;
I nt eger;
I nt eger;
Bi t MapType;
Longl nt;
ATPPBPt 1 ;
ATPPBPt 1 ;
Ptr;

Ptr;
BDSPt r

.= ATPPBPtr (NewPt r (Si zeOF (ATPPar anBl ock))) ;

:= ATPPBPt r (NewPt r (Si zeOf (ATPPar anBl ock)));
: = NewPtr (kMaxPacket Si ze) ;
gSRespBdsPtr : =

BDSPt r (NewPt r (Si zeCOf (BDSType))) ;

gSRespBuf : = NewPtr (kRespBuf Si ze);

err := QpenDriver(' MPP ,ref);

if err <> noErr

W TH gAt pPBPt r* DO

BEG N
at pSocket := 0;
addr Bl ock. aNet

addr Bl ock. aNode
addr Bl ock. aSocket

END;

err : = POpenATPSkt (gAt pPBPt T, f al se); { socket

=0

THEN DoErr (err);

{dynamically allocate a socket}

{accept requests from anyone}

=0
= 0;

is returned in }
{ gAt pPBPtr~. at pSocket}

IF err <> noErr THEN DoErr (err);
| F gAtpPBPtr~. i oResult <> noErr THEN DoErr(err);

Using ATP

6-17

(d1Vv) |020101d uonoesuel] yela|ddy n

CHAPTER 6

AppleTalk Transaction Protocol (ATP)

W TH gAt pPBPt r* DO

BEG N
regLength : = 0; {request data length will be returned }
{ to you here}
reqgPoi nter : = gGet ReqBufPtr; {pointer to buffer for incom ng request }
{ data}
END;

err := PCet Request (gAt pPBPt r, TRUE) ; {asynchr onous PCet Request}

IF err <> noErr THEN DoErr(err);

{Poll ioResult until the call conpletes.}
VWHI LE gAt pPBPtr~.i oResult > noErr DO
BEG N
GoDoSonet hi ng; {return control to user while you wait }

{ for PGetRRequest to conpl ete}
END;

I F gAtpPBPtr~.i oResult <> noErr THEN DoErr(err);

MyPr ocessRequest Recei ved(gAt pPBPt r ~. r eqPoi nt er, gAt pPBPt r . r egLengt h)
{user routine that |ooks at the request }
{ data received}

{Wal k through the bitmap and see how nany response buffers you need.}
NunmOf Buf s : = 0;
FOR thisBit :=
BEG N
{EBach bit that is set corresponds to a buffer.}
if BitTst(@AtpPBPtr~. bitMap,thisBit) = TRUE THEN
BEG N
{Your routine to fill in the appropriate response data.}
Set UpResponseDat a(gSRespBuf, t hi sBit);
NunOf Buf s : = NunOf Bufs + 1;
END
END;

0 to 7 DO

{Put your response data into the BDS structure.}
nBufs : = Buil dBDS(gSRespBuf, Ptr(gSRespBdsPtr), (Nuntf Buf s * kMaxPacket Si ze));

6-18 Using ATP

CHAPTER 6

AppleTalk Transaction Protocol (ATP)

W TH gSendRespPBPt r* DO
BEG N

at pSocket := gAt pPBPtr~. at pSocket ;
at pFl ags : = at pEOWal ue; {indicate end of nessage}

{Send response to the nachine that sent you the request.}

addr Bl ock. aNet := gAt pPBPtr~. addr Bl ock. aNet ;
addr Bl ock. aNode : = gAt pPBPt r~. addr Bl ock. aNode;
addr Bl ock. aSocket := gAt pPBPtr”. addr Bl ock. aSocket ;

bdsPoi nter := Ptr(gSRespBdsPtr);
nunOof Buf fs : = NumOf Buf s; {send all of the responses back now}
bdsSi ze : = nBufs; {indi cate how nmany responses you are }
{ sending}
transli D : = gAtpPBPtr”.transl D, {use transID returned fromthe }
{ PGCet Request function}
END;

err

: = PSendResponse(gSendRespPBPt r, FALSE) ;

IF err <> noErr THEN DoErr(err);

{Clean up after you are done.}
Di sposePtr (Ptr(gAtpPBPtr));

Di sposePtr (Ptr(gSendRespPBPtr));
Di sposePtr (gGet ReqBuf Ptr);

Di sposePtr(Ptr(gSRespBdsPtr));

Di sposePtr (gSRespBuf) ;

END.

Canceling an ATP Function

You can cancel all pending ATP function calls made on a specific socket by closing the
socket. However, ATP provides functions that allow you to cancel individual function
calls or all function calls of a particular kind. If you want to close a socket for which there
are still pending requests that you don’t want executed, you should first explicitly cancel
those requests by using the ATP function provided for this purpose, instead of simply
closing the socket.

You can use the following functions to cancel specific requests:

» To cancel a PGet Request function, use the PKi | | Get Req function, which is
described on page 6-41. You identify the request to be canceled by specifying

the pointer to the parameter block that you passed to the PGet Request function
when you called it.

Using ATP 6-19

(d1Vv) |020101d uonoesuel] yela|ddy n

CHAPTER 6

AppleTalk Transaction Protocol (ATP)

= To cancel all pending PGet Request functions on a certain socket, use the
ATPKi | | Al l Get Req function described on page 6-42; you specify the socket number,
whose pending get requests you want to cancel, as the value of the at pSocket
parameter.

» To cancel a PSendRequest or a PNSendRequest function, use the PKi | | SendReq
function described beginning on page 6-38. You identify the request to be canceled
by specifying the pointer to the parameter block that you passed to the function
when you issued it. To cancel a PSendRequest function, use the PRel TCB function
described beginning on page 6-40. You identify the request to be canceled by
specifying the request transaction ID as the t r ans| D parameter and the destination
socket of the request as the addr Bl ock parameter.

= To cancel an exactly-once PSendResponse function, use the PRel RspCB function,
described beginning on page 6-43. You identify the request to be canceled by
specifying the transaction ID of the associated request as the t r ans| D parameter and
the PSendResponse destination socket number as the at pSocket parameter.

ATP Reference

This section describes the data structures and routines that are specific to ATP.

s The “Data Structures” section shows the Pascal data structures for the buffer data
structure (BDS) array, the ATP parameter block, and the address block record.

= The “Routines” section describes the ATP routines for making a transaction request,
receiving and responding to a transaction request, canceling a call to an ATP function,
and building a buffer data structure to be used to hold response data to be sent
and received.

Data Structures

This section describes the data structures that are specific to ATP. These data structures
include the buffer data structure that is used to hold the response data packets to be sent
from one application and received by another, the ATP parameter block that is used to
hold input and output values for ATP functions, and the address block record data
structure that ATP functions use to specify an AppleTalk internet socket address.

The Buffer Data Structure

6-20

The buffer data structure (BDS) is an array of type BDSEI erment containing up to eight
records, each of which is used to hold a response packet. You create a BDS to hold

the response data that you send using the PSendResponse function. You also create

a BDS to receive the response packets that you request through a PSendRequest or
PNSendRequest function. You can use the Bui | dBDS function to create this data
structure, or you can create the data structure in Pascal.

ATP Reference

CHAPTER 6

AppleTalk Transaction Protocol (ATP)

TYPE BDSEl enent =

RECORD
buf f Si ze: Integer;
buffPtr: Ptr;

dat aSi ze: Integer;
userBytes: Longint;
END;
BDSType = ARRAY[O0..7] OF BDSEIl enent ;
BDSPtr = "~BDSType;
Bi t MapType = PACKED ARRAY[0..7] OF Bool ean;

Field descriptions

buf f Si ze The size in bytes of the buffer.

buf f Pt r A pointer to the buffer.

dat aSi ze The size of the data received.

user Byt es Up to 4 bytes of additional data separate from the response data.
The ATP Parameter Block

The ATP functions require a pointer to an ATP parameter block that is used to pass the
input and output parameters associated with the function. The ATPPar anBl ock data
type defines the ATP parameter block. The ATP parameter block includes variant records
for the fields that are particular to an ATP routine.

This section defines the fields that are common to all ATP functions that use the ATP
parameter block. (The Bui | dBDS function does not use the ATP parameter block.) These
common fields are either filled in by the MPW interface or returned by the function; your
application does not need to provide values for these fields. This section does not define
reserved fields, which are used internally by the .ATP driver or not at all. The fields that
are used for specific functions only are defined in the descriptions of the functions to
which they apply.

TYPE ATPPar anBl ock =
PACKED RECORD

gLi nk: QEl enPtr; {reserved}

gType: I nt eger; {reserved}

i oTr ap: I nt eger; {reserved}

i oCdAddr : Ptr; {reserved}

i oConmpl etion: ProcPtr; {conpl eti on routine}

i oResul t: OSErr; {result code}

user Dat a: Longi nt; { ATP user bytes}

reqTl D I nt eger; {request transaction |ID}

i oRef Num I nt eger; {driver reference nunber}
csCode: I nt eger; {call command code}

at pSocket : Byt e; {currBitMap or socket nunber}

ATP Reference 6-21

(d1Vv) |020101d uonoesuel] yela|ddy n

CHAPTER 6

AppleTalk Transaction Protocol (ATP)

CASE MPPPar mlype OF
SendRequest Par m
SendResponsePar m
Cet Request Parm
AddResponsePar m
Ki I | SendRegPar m

{control infornmation}

{source/ dest. socket address}
{request/response | ength}

{ptr to request/response data}
{ptr to response BDS}

{nunber of
{tinmeout interval}

{nunber of responses }

{ actually received}

{nunber of retries}

{used internally for }

{ PNSendRequest }

{TRel ease tinme for extended }

responses expect ed}

{ send request}

{bi t map}
{nunmber of BDS el enent s}
{transaction |ID}

{bi t map}
{reserved}

{sequence nunber}
{reserved}

{ptr to (queue elenent) function to }
{ cancel}

(at pFl ags: Byt e;
addr Bl ock: Addr Bl ock;
reqLengt h: I nt eger;
reqPoi nt er: Ptr;
bdsPoi nt er: Ptr;
CASE MPPPar mlype OF
SendRequest Par m
(nunOf Buf f s: Byt e;
ti meQut Val : Byt e;
nunof Resps: Byt e;
retryCount: Byt e;
i nt Buf f: I nt eger;
TRel Ti ne: Byte);
SendResponsePar m
(fillerO: Byt e;
bdsSi ze: Byt e;
transl D I nt eger);
Cet Request Parm
(bi t map: Byt e;
fillerl: Byt e);
AddResponsePar m
(rspNum Byt e;
filler2: Byt e);
Ki | | SendReqPar m
(aKi Il CEl : Ptr));
END;
ATPPBPtr = ~ATPPar anBl ock;

6-22

Field descriptions
i oConpl etion

A pointer to a completion routine that you can provide. When you

execute a function asynchronously, the .ATP driver calls your
completion routine when it completes execution of the function if

ATP Reference

CHAPTER 6

AppleTalk Transaction Protocol (ATP)

i oResul t

i oRef Num

csCode

The Address Block Record

you specify a pointer to the routine as the value of this field. Specify

NI L for this field if you do not wish to provide a completion routine.

If you execute a function synchronously, the .ATP driver ignores the
i oConpl et i on field. For information about completion routines,
see the chapter “Introduction to AppleTalk” in this book.

The result of the function. If you call the function asynchronously,

the .ATP driver sets this field to 1 as soon as you call the function,

and it changes the field to the actual result code when the function
completes execution.

The .ATP driver reference number. The MPW interface fills in
this field.

The command code for the ATP function to be executed. The MPW
interface fills in this value for you.

Routines

The address block record defines a data structure of Addr Bl ock type. The following
ATP functions use this data type to specify AppleTalk internet socket addresses:
PSendRequest, PSendResponse, PNSendResponse, POpenATPSkt , PGet Request,
PSendResponse, PAddResponse, PRel TCB, PRel RspCB.

TYPE Addr Bl ock
PACKED RECORD
aNet :
aNode:
aSocket :
END;

Field descriptions
aNet

aNode

aSocket

I nt eger; {networ k nunber}
Byt e; {node 1D}
Byt e; {socket nunber}

The network number to which the node belongs that is running the
ATP client application whose address you are specifying.

The node ID of the machine running the ATP client application
whose address you are specifying.

The number of the socket used for the ATP client application.

This section describes the ATP routines that you use to

= send a request to a responder socket client

= open and close an ATP socket

= set up a socket to listen for a request

= send a response to a requester socket client

= cancel a response or a request function

» build a buffer data structure to store the response data

ATP Reference

6-23

(d1Vv) |020101d uonoesuel] yela|ddy n

CHAPTER 6

AppleTalk Transaction Protocol (ATP)

All of the ATP functions except the Bui | dBDS function use the ATP parameter block to
pass input and output parameters. Each function description shows the parameter block
for that function. An arrow preceding a parameter indicates whether the parameter is an
input parameter, an output parameter, or both:

Arrow Meaning

- Input

- Output

o Both
Sending an ATP Request

This section describes the PSendRequest function that you use to send a request to
another socket’s client application, allowing ATP to dynamically allocate the socket to be
used to send the request; in this case, ATP opens the socket when you issue the function
and closes it after the call completes execution. It also describes the PNSendRequest
function that you can use to send a request to another socket while specifying the socket
to be used to send the request; you must open the socket to be used and close it when
you're finished with it.

PSendRequest

6-24

The PSendRequest function sends a request to another socket whose client application
is to respond to the request. PSendRequest then waits for a response before completing
execution.

FUNCTI ON PSendRequest (thePBPtr: ATPPBPt; async: Bool ean): OSErr;

t hePBPt r A pointer to an ATP parameter block.

async A Boolean that indicates whether the function should be executed
asynchronously or synchronously. Specify TRUE for asynchronous
execution.

Parameter block

- i oconpl eti on ProcPtr A pointer to a completion routine.

- i oResul t CSEr r The function result.

- user Dat a Longl nt Four bytes of user data.

- regTI D | nt eger The transaction ID for this request.

- csCode | nt eger Always sendRequest for this function.
- currBitMap Byte A bitmap.

- at pFl ags Byt e The control information.

- addr Bl ock Addr Bl ock The destination socket address.

- reglLengt h I nt eger The size in bytes of the request.

ATP Reference

CHAPTER 6

r egPoi nt er
bdsPoi nt er
numof Buf f s
ti meQut Val
numcf Resps
retryCount
TRel Ti me

AppleTalk Transaction Protocol (ATP)

Ptr A pointer to request data.

Ptr A pointer to response data.

Byt e The number of responses expected.
Byt e The timeout interval.

Byt e The number of responses received.
Byt e The number of retries.

Byte The release timer setting.

Field descriptions

user Dat a

reqTl D

currBit Map
at pFl ags

addr Bl ock

reqlLength
r eqPoi nt er
bdsPoi nt er

numOf Buf f s

ti meCut Val

nuntX Resps
r et r yCount

ATP Reference

Four bytes of user data that are sent in the header of the message.
You can use these bytes for any purpose that you wish.

A number that identifies this transaction request. If you want to use
the PRel TCB function to cancel the transaction, you must pass it
this number.

A bitmap showing which packets of the transaction were received.

A control information field whose bits, numbered 0-7, are used
as flags.

You set bit 5 (at pXOval ue) to specify an exactly-once transaction.
To specify an at-least-once transaction, you clear the bit.

To set the other connection end’s release timer, set bit 2 of this flag,
and use the TRel Ti ne field to indicate the amount of time. Bit 2

(at pXcal | val ue) indicates that the parameter block is extended to
include the release timer field.

ATP sets the at pTI Dval i dval ue bit (bit 1) of this field to indicate
that the transaction ID field (r eqTl D) now contains valid data; you
should determine if this bit is set before you check the request
transaction ID.

To direct ATP to use DDP’s checksum feature, set the send
checksum (at pSendChkval ue) bit (bit 0) of this flag.

The AppleTalk internet address of the socket to which the request is
to be sent.

The size of the request to be sent.
A pointer to the request data to be sent.

A pointer to a buffer data structure (BDS) that is to be used to hold
the responses.

On input, the number of response packets that you expect from the
responder application. If this field contains a nonzero number on
return, you can examine the cur r Bi t Map field to determine which
packets of the transaction were actually received.

The number of seconds that ATP should wait for a response before
resending the request.

The number of responses actually received.

The maximum number of times ATP should retry to send the
request. This field is used to monitor the number of retries; for
each retry, ATP decrements it by 1.

6-25

(d1Vv) |020101d uonoesuel] yela|ddy n

DESCRIPTION

6-26

CHAPTER 6

AppleTalk Transaction Protocol (ATP)

TRel Ti e The release timer setting. Set the 3 lower bits of this field value to
indicate the time to which the release timer should be set for the
other end of the connection:

Setting of
TRel Ti me release timer
000 30 seconds
001 1 minute
010 4 minutes
100 8 minutes

The PSendRequest function sends your request data to the destination ATP socket that
you specify, and then it waits for that socket’s client to return a response message. ATP
dynamically assigns and opens the socket to be used to send the request, and it closes
the socket when the function completes execution. Before you call the PSendRequest
function, you must build a buffer data structure to hold the response data. You can use
the Bui | dBDS function to do this. See “The Buffer Data Structure” on page 6-8 and
“BuildBDS” on page 6-44 for a discussion of this function.

If you want to include additional information along with the request message, you can
use the user bytes to include it; for example, you can use these bytes for command
information.

The PSendRequest function completes execution when it receives an entire response or
when the retry count is exceeded. The timeout value (t i meQut Val) determines how
many seconds PSendRequest waits before resending the original request packet. The
retry count (r et r yCount) value determines the maximum number of times that ATP is
to resend the request. Together the timeout value and the retry count determine the total
retry time in seconds (t i meQut Val xretryCount = total retry time). ATP modifies the
retry count field value during execution of the PSendRequest function if it resends the
request; ATP decrements the field by 1 for each retry. See “Writing a Requester ATP
Application” beginning on page 6-9 for information on how to select these values.

The .ATP driver maintains a timer, called the release timer, for each call to the
PSendResponse function that is part of an exactly-once (XO) transaction. If the timer
expires before the transaction is complete (that is, before the socket receives the
transaction release packet), the driver completes the PSendResponse function. Before
AppleTalk Phase 2, the release timer was always set to 30 seconds. You can set the
responding socket’s release timer to a value other than 30 seconds. To do this, set

the extended call bit (bit 2) of the at pFl ags field in the parameter block for the
PSendRequest function and specify the release timer parameter as the value of the

ATP Reference

CHAPTER 6

AppleTalk Transaction Protocol (ATP)

TRel Ti e field. The nodes at both ends of the ATP connection must be running
AppleTalk Phase 2 drivers for this feature to work. For a discussion of exactly-once
transactions and use of the release timer, see “At-Least-Once and Exactly-Once
Transactions” on page 6-7. You should set the exactly-once flag (bit 5) if you want the
request to be part of an exactly-once transaction.

You can use the PKi | | SendReq function or the PRel TCB function to cancel a
PSendRequest call. For the PRel TCB function, you need the request transaction ID that
ATP returns in the request transaction ID (r eqTl D) field of the PSendRequest call’s
parameter block. You can examine the request transaction ID field before the completion
of the call, but its contents are valid only after the t i dVal i d bit (bit 1) of the at pFl ags
field has been set. You should determine if this bit is set before you check the request
transaction ID.

ASSEMBLY-LANGUAGE INFORMATION

To execute the PSendRequest function from assembly language, call the _Cont r ol
trap macro with a value of sendRequest in the csCode field of the parameter block. To
execute this function from assembly language, you must also specify the .ATP driver
reference number.

RESULT CODES
noErr 0 No error
regFail ed -1096 Retry count exceeded
t ooManyReqs -1097 Too many concurrent requests
noDat aAr ea -1104 Too many outstanding ATP calls
r eqAbor t ed -1105 Request canceled
PNSendRequest

The PNSendRequest function sends a request to another socket’s client. It uses the
socket that you specify to send the request.

FUNCTI ON PNSendRequest (thePBPtr: ATPPBPtr; async: Bool ean): OSErr;

t hePBPt r A pointer to an ATP parameter block.

async A Boolean that indicates whether the function should be executed
asynchronously or synchronously. Specify TRUE for asynchronous
execution.

ATP Reference 6-27

(d1Vv) |020101d uonoesuel] yela|ddy n

CHAPTER 6

AppleTalk Transaction Protocol (ATP)

Parameter block

- i oconpl eti on ProcPtr
i oResul t OSEr r
user Dat a Longl nt
reqTI D | nt eger
csCode I nt eger
at pSocket Byt e
at pFl ags Byt e
addr Bl ock Addr Bl ock
reglLengt h I nt eger
r eqPoi nt er Ptr
bdsPoi nt er Poi nt er
nuntf Buf f s Byt e
ti meQut Val Byt e
nuntX Resps Byt e
retryCount Byt e
i nt Buf f I nt eger
TRel Ti me Byt e

A pointer to a completion routine.

The function result.

Four bytes of user data.

The transaction ID for this request.
Always nSendRequest for this function.
The socket number to send the request.
The control information.

The destination socket address.

The size in bytes of the request.

A pointer to the request data.

A pointer to the BDS.

The number of responses expected.
The timeout interval.

The number of responses received.

The number of retries.

Abuffer that ATP uses internally.

The release timer setting.

Field descriptions
user Dat a Four bytes of user data that are sent in the header of the message.

You can use these bytes for any purpose that you wish.
reqTlI D A number that identifies this transaction request.

at pSocket The socket to be used to send the request. You must have previously

opened this socket by calling the POpenATPSkt function.

A control information field whose bits, numbered 0-7, are used
as flags.

at pFl ags

You set bit 5 (at pXOval ue) to specify an exactly-once transaction.
To specify an at-least-once transaction, you clear the bit.

To set the other connection end’s release timer, set bit 2 of this flag
(at pXcal | val ue) to signal that this is an extended call and that
the parameter block includes an additional field. Then you use the
TRel Ti ne field to indicate the amount of time.

ATP sets the at pTI Di dVal i dval ue bit (bit 1) of this field to
indicate that the transaction ID field (r eqTl D) now contains

valid data; you should determine if this bit is set before you
check the request transaction ID.

To direct ATP to use DDP’s checksum feature, set the

at pSendChkval ue bit (bit 0) of this flag.

The AppleTalk internet socket address of the application to which
the request is being sent.

addr Bl ock

regLength
r eqPoi nt er
bdsPoi nt er

The size in bytes of the request data to be sent.
A pointer to the request data to be sent.

A pointer to the buffer data structure (BDS) that is to hold the data
returned in response to the request.

nunf Buf f s The number of response packets requested and expected from the

responder application.

6-28 ATP Reference

DESCRIPTION

CHAPTER 6

AppleTalk Transaction Protocol (ATP)

ti meCut Val The number of seconds that ATP should wait for a response before
resending the request.

numof Resps The number of response packets actually received.

retryCount The maximum number of times ATP should retry to send the

request. This field value is used to monitor the number of retries;
for each retry, ATP decrements the value by 1.

i nt Buf f Two bytes that are used internally by ATP.

TRel Ti e The release timer setting. The 3 lower bits of this field value indicate
the time to which the release timer is to be set, as follows:

Setting of
TRel Ti e release timer
000 30 seconds
001 1 minute
010 4 minutes
100 8 minutes

The PNSendRequest function is similar to the PSendRequest function except that
rather than relying on ATP to dynamically allocate a socket to use for the transaction,
PNSendRequest lets you specify the socket to be used to send the request. You set the
at pSocket field of the parameter block to the number of the socket to be used for the
request; you must have previously opened the socket by calling the POpenATPSkt
function. POpenATPSkt lets you send more than one asynchronous request using the
same socket. The number of concurrent requests that you send using PNSendRequest
is machine dependent. If you exceed this limit, ATP returns an error message

(t ooManyReqs) indicating this. Note that if you call the PNSendRequest function
without having previously opened the socket that you specify for the send request, ATP
returns a bad ATP socket (badATPSkt) error.

The .ATP driver maintains a timer, called the release timer, for each call to the
PSendResponse function that is part of an exactly-once (XO) transaction. If the timer
expires before the transaction is complete (that is, before the socket receives the
transaction release packet), the driver completes the PSendResponse function. Before
AppleTalk Phase 2, the release timer was always set to 30 seconds. To set the other
connection end’s release timer to another value, set bit 2 of the at pFl ags field in the
parameter block for the PNSendRequest function to indicate that this is an extended
call, then set the TRel Ti ne field to the new value. The nodes at both ends of the ATP
connection must be running AppleTalk Phase 2 drivers for this feature to work. For a
discussion of exactly-once transactions and use of the release timer, see “At-Least-Once
and Exactly-Once Transactions” on page 6-7. You should set the exactly-once flag if
you want the request to be part of an exactly-once transaction.

You can use the PKi | | SendReq function to cancel a pending PNSendRequest call.
Unlike PSendRequest , you cannot use the PRel TCB function to kill this request call.

ATP Reference 6-29

(d1Vv) |020101d uonoesuel] yela|ddy n

CHAPTER 6

AppleTalk Transaction Protocol (ATP)

SPECIAL CONSIDERATIONS

The parameter block for the PNSendRequest function requires 2 additional bytes,
i nt Buf f, for ATP’s internal use. You must not modify these bytes.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

To execute the PNSendRequest function from assembly language, call the _Cont r ol
trap macro with a value of nSendRequest in the csCode field of the parameter block.
To execute this function from assembly language, you must also specify the .ATP driver
reference number.

NoErr 0 No error

reqFai | ed -1096 Retry count exceeded

t ooManyReqs -1097 Too many concurrent requests
badATPSkt -1099 Specified socket is not opened
noDat aAr ea -1104 Too many outstanding ATP calls
r eqAbor t ed -1105 Request canceled

Opening and Closing an ATP Socket

This section describes the POpenATPSkt function that you use to open a socket for
receiving ATP requests from another socket’s client application. It also describes the

PCl 0seATPSkt function that you use to close a socket used for receiving requests after
you are finished with that socket. You also use the POpenATPSkt and PCl oseATPSkt
functions to open and close a socket that you want to use to send requests through a
specific socket by calling the PNSendRequest function.

POpenATPSkt

6-30

The POpenATPSkt function opens a socket to be used to receive ATP requests or to be
used to send ATP requests through the PNSendRequest function.

FUNCTI ON POpenATPSkt (thePBptr: ATPPBPtr; async: Bool ean): OSErr;

t hePBptr A pointer to an ATP parameter block.

async A Boolean that indicates whether the function should be executed
asynchronously or synchronously. Specify TRUE for asynchronous
execution.

Parameter block

- i oConpl etion ProcPtr A pointer to a completion routine.

- i oResul t OSErr The function result.

- csCode | nt eger Always openATPSkt for this function.
o at pSocket Byt e The socket number to be used.

- addr Bl ock Addr Bl ock The socket request specification.

ATP Reference

DESCRIPTION

CHAPTER 6

AppleTalk Transaction Protocol (ATP)

Field descriptions

at pSocket The number of the socket that ATP is to open. To direct ATP to
dynamically assign a socket number, which it returns as the value
of this field, specify 0.

addr Bl ock A value that specifies the AppleTalk internet socket addresses

that the at pSocket field will receive requests from; specify 0 for
the network number, the node ID, or the socket number to accept
all requests based on the value of that part of the AppleTalk internet
socket address.

The POpenATPSkt routine serves two purposes: you use it to open a socket to be used
for incoming requests, and you use it to open a socket to send requests using a specific
socket. (The PNSendRequest function lets you send a request using a specific socket,
but you must first open that socket using POpenATPSkt .) You can use the addr Bl ock
field to filter requests that you will accept by restricting network addresses.

ASSEMBLY-LANGUAGE INFORMATION

To execute the POpenATPSkt function from assembly language, call the _Control trap
macro with a value of openATPSkt in the csCode field of the parameter block. To
execute this function from assembly language, you must also specify the .ATP driver
reference number.

RESULT CODES

noErr 0 No error

t ooMany Skt s -1098 Too many responding sockets

noDat aAr ea -1104 Too many outstanding ATP calls
SEE ALSO

The PNSendRequest function is described on page 6-27.
PCloseATPSkt

The PCl 0seATPSkt function closes a socket that was opened to receive ATP requests or
to send requests over a specific socket.

FUNCTI ON PCl oseATPSkt (thePBPtr: ATPPBPtr; async: Bool ean): OSErr;

t hePBPt r A pointer to an ATP parameter block.

async A Boolean that indicates whether the function should be executed
asynchronously or synchronously. Specify TRUE for asynchronous
execution.

ATP Reference 6-31

(d1Vv) |020101d uonoesuel] yela|ddy n

CHAPTER 6

AppleTalk Transaction Protocol (ATP)

Parameter block

- i oConpl eti on ProcPtr A pointer to a completion routine.

- i oResul t OSErr The function result.

- csCode I nt eger Always cl 0seATPSkt for this function.
. at pSocket Byt e The socket number.

Field descriptions
at pSocket The number of the socket to be closed.

DESCRIPTION

The PCl 0seATPSkt function closes the socket that you opened to receive ATP requests
or to send them over a specific socket.

ASSEMBLY-LANGUAGE INFORMATION

To execute the PCl 0seATPSkt function from assembly language, call the _Cont r ol
trap macro with a value of cl 0seATPSkt in the csCode field of the parameter block.
To execute this function from assembly language, you must also specify the .ATP driver
reference number.

RESULT CODES

noErr 0 No error
noDat aAr ea -1104 Too many outstanding ATP calls

Setting Up a Socket to Listen for Requests

After you open a socket to be used to response to requests, you need to set up that socket
to receive requests. You use the PGet Request function for this purpose.

PGetRequest

The PCGet Request function sets up a socket to listen for a request from another socket.
FUNCTI ON PGet Request (thePBPtr: ATPPBPtr; async: Bool ean): OSErr;

t hePBPt r A pointer to an ATP parameter block.

async A Boolean that indicates whether the function should be executed
asynchronously or synchronously. Specify TRUE for asynchronous
execution.

6-32 ATP Reference

DESCRIPTION

CHAPTER 6

AppleTalk Transaction Protocol (ATP)

Parameter block

- i oConpl eti on ProcPtr A pointer to a completion routine.

- i oResul t OSEr r The function result.

- user Dat a Longl nt Four bytes of user data.

- reqTI D Word The transaction ID.

- csCode | nt eger Always get Request for this function.

- at pSocket Byt e The socket number.

- at pFl ags Byt e The control information.

- addr Bl ock Longl nt The destination socket address.

o reglLengt h Wrd On input, the request buffer size. On return,
the actual of the request received.

- reqPoi nt er Ptr A pointer to the request buffer.

- bi t Map Byt e A bitmap.

Field descriptions

user Dat a The 4 user bytes from the request.

reqTl D The transaction ID of the request that PGet Request has received.

ATP supplies this value.
at pSocket The number of the socket that is to be used to listen for requests.

This is the number of a socket you opened using the POpenATPSkt
function call.

at pFl ags A control information field whose bits, numbered 0-7, are used
as flags.

ATP sets bit 5, the exactly-once flag (at pXOval ue), if the request
received is part of an exactly-once transaction.

addr Bl ock The AppleTalk internet address of the socket from which the
request was sent. ATP returns this value.
regqLength On input, the size in bytes of the buffer to be used to store the

incoming request. On return, the actual number of bytes of the
request received.

r eqPoi nt er A pointer to the location of the buffer to be used to store the
incoming request.
bi t Map A bitmap of the transaction that ATP returns.

To receive an ATP request, you must set up a socket to listen for incoming requests; you
use the PGet Request function to do this. In almost all cases, you should call the

PCet Request function asynchronously to avoid delaying execution of your program
until after an ATP request comes in. The PGet Request function completes execution
after it receives an ATP request.

The PCGet Request function returns the transaction ID of the request that it receives in the
r eqTl Dfield. You should save this value if you intend to respond to the request; this
transaction ID is used as an input parameter to the PSendResponse and PAddResponse
functions. To determine that the request transaction ID specified in the r eq Tl Dfield is
valid, first check the at pTlI DVal i dval ue bit (bit 1) of the at pFl ags field. If this bit is
set, the r eqTl Dfield value is valid.

ATP Reference 6-33

(d1Vv) |020101d uonoesuel] yela|ddy n

CHAPTER 6

AppleTalk Transaction Protocol (ATP)

You must allocate nonrelocatable memory to be used as the buffer to hold an incoming
request. Make sure that you allocate enough memory to hold the entire request; ATP
will not deliver more data than will fit in the amount of buffer space that you specified
as the value of the r eqLengt h field. The buffer should be 578 bytes long, which is the
maximum size of a request packet, unless you know the exact size of the request.

SPECIAL CONSIDERATIONS

Memory used for the incoming request buffer belongs to ATP for the life of the call.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

To execute the PGet Request function from assembly language, call the _Cont r ol trap
macro with a value of get Request in the csCode field of the parameter block. To
execute this function from assembly language, you must also specify the .ATP driver
reference number.

noErr 0 No error
badATPSkt -1099 Bad responding socket

For information on opening a socket that you can set up to receive requests, use the
PQpenATPSKkt function, described on page 6-30.

Responding to Requests

After you receive and process a request, you can call the PSendResponse function to
send the response data to the requesting socket. If you need to send additional data, you
can call the PAddResponse function after you call PSendResponse. This section
discusses the PSendResponse and PAddResponse functions.

PSendResponse

6-34

The PSendResponse function sends the response message to the requester.
FUNCTI ON PSendResponse (thePBPtr: ATPPBPtr; async: Bool ean): OSErr;

t hePBPt r A pointer to an ATP parameter block.

async A Boolean that indicates whether the function should be executed
asynchronously or synchronously. Specify TRUE for asynchronous
execution.

ATP Reference

DESCRIPTION

CHAPTER 6

AppleTalk Transaction Protocol (ATP)

Parameter block

- i oConpl etion ProcPtr A pointer to a completion routine.

- i oResul t CSErr The function result.

- user Dat a Longl nt Four bytes of user data.

- csCode I nt eger Always sendResponse for this function.
. at pSocket Byt e The socket number.

. at pFl ags Byt e The control information.

- addr Bl ock Addr Bl ock The destination socket address.

- bdsPoi nt er Ptr A pointer to the response BDS.

- nunl Buf f s Byt e The number of response packets to be sent.
. bdsSi ze Byt e The BDS size in elements.

. transl D | nt eger The transaction ID.

Field descriptions

user Dat a Four bytes of user data that are sent in the header of the message. If
the response was part of an exactly-once transaction, this field
contains the user bytes from the TRel packet.

at pSocket The number of the socket that is sending the response.
at pFl ags A control information field whose bits, numbered 0-7, are used
as flags.

To signal that this packet is the last packet in the transaction’s
response message when the number of responses is less than
expected, set the end-of-message (at pEOMval ue) bit (bit 4).

ATP sets the send-transmission-status (at pSTSval ue) bit (bit 3) to
force the requester to retransmit a request immediately, when this
is necessary.

To direct ATP to use DDP’s checksum feature, set the send checksum
(at pSendChkval ue) bit (bit 0) of this flag.

addr Bl ock The AppleTalk internet socket address of the socket to which the
response is to be sent.

bdsPoi nt er A pointer to the response buffer data structure (BDS) that contains
the response data.

nunf Buf f s The number of response packets to be sent.

bdsSi ze The number of elements in the buffer data structure (BDS).

transiD The transaction ID of the request for which this response is meant.

You call PSendResponse when you receive a request, and after you have created a
response message. The PSendResponse function sends the data to the socket whose
address you specify; this is the address of the requester socket. If you cannot or do not
want to send the entire response at one time, you can call PSendResponse to send the
first part of it, then call PAddResponse later to send the remainder of the response.

To signal the requester socket that you are sending fewer response packets than it
expects to receive, you must set the end-of-message flag (bit 4) of the at pFl ags
parameter.

ATP Reference 6-35

(d1Vv) |020101d uonoesuel] yela|ddy n

CHAPTER 6

AppleTalk Transaction Protocol (ATP)

For each call to the PSendResponse function that is part of an exactly-once (XO)
transaction, ATP maintains a timer, called the release timer. If the timer expires before

the transaction is completed, that is, before the socket receives the transaction release
packet, ATP completes the PSendResponse function. Before AppleTalk Phase 2, the
release timer was always set to 30 seconds. The PSendRequest or the PNSendRequest
function can set the release timer for the responder to a different value. For more
information about sending a response, see “Responding to Requests” beginning on
page 6-16.

SPECIAL CONSIDERATIONS

During exactly-once transactions, PSendResponse doesn’t complete until either a TRel
packet is received from the socket that made the request or the retry count is exceeded.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

To execute the PSendResponse function from assembly language, call the _Cont r ol
trap macro with a value of sendResponse in the csCode field of the parameter block.
To execute this function from assembly language, you must also specify the .ATP driver
reference number.

noErr 0 No error

badATPSkt -1099 Bad responding socket

badBuf f Num -1100 Sequence number out of range
noRel Err -1101 No release received

noDat aAr ea -1104 Too many outstanding ATP calls

See the chapter “Introduction to AppleTalk” in this book for a description of the
AppleTalk internet socket address structure.

For a description of the possible release timer values that PSendRequest or
PNSendRequest can set, see either the PSendRequest function on page 6-24
or the PNSendRequest function on page 6-27.

PAddResponse

6-36

The PAddResponse function sends an additional response packet to a socket that
has already been sent the first part of the response message through the
PSendResponse function.

FUNCTI ON PAddResponse (thePBPtr: ATPPBPtr; async: Bool ean): OSErr;

ATP Reference

DESCRIPTION

CHAPTER 6

AppleTalk Transaction Protocol (ATP)

t hePBPt r A pointer to an ATP parameter block.

async A Boolean that indicates whether the function should be executed
asynchronously or synchronously. Specify TRUE for asynchronous
execution.

Parameter block

. i oConpl eti on ProcPtr A pointer to a completion routine.

- i oResul t CSErr The function result.

- user Dat a Longl nt Four bytes of user data.

N csCode | nt eger Always addResponse for this function.
= at pSocket Byt e The source socket number.

N at pFl ags Byt e The control information.

- addr Bl ock Addr Bl ock The destination socket address.

N reqlLengt h I nt eger The size in bytes of the response data.
. reqPoi nt er Ptr A pointer to the response data.

N rspNum Byt e The sequence number.

N transl D I nt eger The transaction ID.

Field descriptions
user Dat a

at pSocket

at pFl ags

addr Bl ock

regLength
r eqPoi nt er
rspNum
reqtTl D

Four bytes of user data that are sent in the header of the message.
You can use these bytes for any purpose that you wish.

The number of the socket that is used to send the additional
response.

A control information field whose bits, numbered 0-7, are used
as flags.

To signal that this packet is the last packet in the transaction’s
response message when the number of responses is less than
expected, set the end-of-message (at pEOMval ue) bit (bit 4).

ATP sets the send-transmission-status (at pSTSval ue) bit (bit 3) to
force the requester to retransmit a request immediately, when this
is necessary.

To direct ATP to use DDP’s checksum feature, set the send
checksum (at pSendChkval ue) bit (bit 0) of this flag

The number of the socket to which the additional response packet is
to be sent.

The size in bytes of the response data to be sent.
A pointer to the response data to be sent.
The sequence number of the response, in the range of 0 to 7.

The transaction ID of the request for which this response is meant.

The PAddResponse function sends an additional response packet, following the initial
response sent in return to a PSendResponse request message. You can send multiple
additional response packets, one at a time, up to a total of eight packets including the
initial response packets sent in the PSendResponse function.

ATP Reference

6-37

(d1Vv) |020101d uonoesuel] yela|ddy n

CHAPTER 6

AppleTalk Transaction Protocol (ATP)

You cannot issue a PAddResponse call without having first called PSendResponse.
You must provide a pointer to the buffer containing the data to be sent and specify the
amount of data. Each packet can contain up to 578 bytes of data. You also must specify
the sequence number of the response.

SPECIAL CONSIDERATIONS

If the transaction is part of an exactly-once transaction, you must allocate nonrelocatable
memory for the buffer that you use for the response data, and you must not alter the
contents of this buffer until the corresponding PSendRequest function has completed
execution.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

To execute the PAddResponse function from assembly language, call the _Cont r ol
trap macro with a value of addResponse in the csCode field of the parameter block.
To execute this function from assembly language, you must also specify the .ATP driver
reference number.

noErr 0 No error

badATPSkt -1099 Bad responding socket

badBuf f Num -1100 Sequence number out of range

noSendResp -1103 PAddResponse issued before PSendResponse
noDat aAr ea -1104 Too many outstanding ATP calls

Canceling Pending ATP Functions

This section describes the functions that you use to cancel pending ATP functions.
It describes the PKi | | SendReq function that you use to cancel a PSendRequest
or PNSendRequest function, the PRel TCB function that you use to cancel a
PSendRequest function, the PKi | | Get Req function that you use to cancel a
PGet Request function, the ATPKi | | Al | Get Req function that you use to cancel
all pending PGet Request functions, and the PRel RspCB function that you use to
cancel a PSendResponse call that specifies an exactly-once transaction.

PKillSendReq

6-38

The PKi | | SendReq function cancels the pending PSendRequest or PNSendRequest
functions whose queue element pointer you specify.

FUNCTI ON PKi | | SendReq (thePBPtr: ATPPBPtr; async: Bool ean): OSErr;

ATP Reference

DESCRIPTION

CHAPTER 6

AppleTalk Transaction Protocol (ATP)

t hePBPt r A pointer to an ATP parameter block.

async A Boolean that indicates whether the function should be executed
asynchronously or synchronously. Specify TRUE for asynchronous
execution.

Parameter block

. i oConpl eti on ProcPtr A pointer to the completion routine.

- i oResul t OSErr The function result.

N csCode | nt eger Always ki | | SendReq for this function.
- akKi | | QEl Ptr A pointer to queue element of function

to be removed.

Field descriptions

akKi I I Qel A pointer to the queue element of the pending function that is to be
canceled. This is the pointer to the parameter block that you passed
to the send request function when you issued the function.

To cancel a specific pending PSendRequest or PNSendRequest function, you specify
the pointer to the queue element for the function in the aKi | | QEl field of the parameter
block for the PKi | | SendReq function, then call the function. If the function has

already completed execution or if it is not in the ATP queue for any other reason,

PKi | | SendReq returns a message (CbNot Found) indicating that it could not find the
parameter block.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

To execute the PKi | | SendReq function from assembly language, call the _Cont r ol
trap macro with a value of ki | | SendReq in the csCode field of the parameter block. To
execute this function from assembly language, you must also specify the .ATP driver
reference number.

noErr 0 No error
cbNot Found -1102 The aKi | | QEl parameter does not point to a
PSendRequest or PNSendRequest queue element

To send requests, use the PSendRequest function, described on page 6-24, and the
PNSendRequest function, described on page 6-27.

ATP Reference 6-39

(d1Vv) |020101d uonoesuel] yela|ddy n

PRelTCB

CHAPTER 6

AppleTalk Transaction Protocol (ATP)

DESCRIPTION

The PRel TCB function cancels the pending PSendRequest function that you specify.
FUNCTI ON PRel TCB (thePBPtr: ATPPBPtr; async: Bool ean): OSErr;

t hePBPt r A pointer to an ATP parameter block.

async A Boolean that indicates whether the function should be executed
asynchronously or synchronously. Specify TRUE for asynchronous
execution.

Parameter block

- i oConpl eti on ProcPtr A pointer to a completion routine.

- i oResul t CSEr r The function result.

- csCode | nt eger Always r el TCB for this function.

- addr Bl ock Addr Bl ock The destination socket address.

- transl D | nt eger The transaction ID of the request
to be canceled.

Field descriptions

addr Bl ock The AppleTalk internet address of the destination socket for which
the PSendRequest function that is to be canceled was meant.

transl D The transaction ID of the PSendRequest function to be canceled.
You can get the transaction ID from the r eqTl Dfield of the
PSendRequest parameter block queue entry.

The PRel TCB function releases the queued parameter block for the PSendRequest
function whose transaction ID you specify. The PRel TCB function returns a function
result of r eqAbor t ed for the canceled PSendRequest function.

SPECIAL CONSIDERATIONS

You cannot use this function to cancel a send request that you made using the
PNSendRequest function.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

6-40

To execute the PRel TCB function from assembly language, call the _Cont r ol trap
macro with a value of r el TCB in the csCode field of the parameter block. To
execute this function from assembly language, you must also specify the .ATP
driver reference number.

noErr 0 No error
cbNot Found -1102 The ATP control block was not found
noDat aAr ea -1104 Too many outstanding ATP functions

ATP Reference

CHAPTER 6

AppleTalk Transaction Protocol (ATP)

PKillGetReq

The PKi | | Get Req function cancels the pending PGet Request function that
you specify.

FUNCTION PKi |l | Get Req (thePBPtr: ATPPBPtr; async: Bool ean): OSErr;

t hePBPt r A pointer to an ATP parameter block.

async A Boolean that indicates whether the function should be executed
asynchronously or synchronously. Specify TRUE for asynchronous
execution.

Parameter block

- i oConpl etion ProcPtr A pointer to a completion routine.

- i oResul t OSEr r The function result.

- csCode | nt eger Always ki | | Get Req for this function.
- akKi | | QEl Poi nt er A pointer to the queue element

Field descriptions

aKi | | QEl A pointer to the queue element of the pending call that is to
be canceled.

DESCRIPTION

The PKi | | Get Req function lets you cancel a specific outstanding PGet Request
function without having to cancel all pending get requests or having to close the
socket to do this; closing the socket cancels all outstanding functions on that socket.

To cancel a specific pending PGet Request function, you specify the pointer to the
queue element for the function in the aKi | | QEl field of the parameter block for the

PKi | | Get Req function. The queue element pointer is the pointer to the parameter block
of the PGet Request function to be canceled. If the function has already completed
execution or if it is not in the ATP queue for any other reason, PKi | | Get Req returns a
message (cbNot Found) indicating that it could not find the parameter block.

ASSEMBLY-LANGUAGE INFORMATION

To execute the PKi | | Get Req function from assembly language, call the _Cont r ol trap
macro with a value of ki | | Get Req in the csCode field of the parameter block.

To execute this function from assembly language, you must also specify the .ATP driver
reference number.

RESULT CODES

noErr 0 No error
cbNot Found -1102 The aKi | | | QEl parameter does not point to a
PCet Request queue element

ATP Reference 6-41

(d1Vv) |020101d uonoesuel] yela|ddy n

CHAPTER 6

AppleTalk Transaction Protocol (ATP)

ATPKillAllGetReq

The ATPKi | | Al | Get Req function cancels all pending calls to the PGet Request
function for a specific socket.

FUNCTI ON ATPKi I | Al'l Get Req (thePBPtr: ATPPBPtr;
async: Bool ean): OSErr;

t hePBPt r A pointer to an ATP parameter block.

async A Boolean that indicates whether the function should be executed
asynchronously or synchronously. Specify TRUE for asynchronous
execution.

Parameter block

- i oConpl etion ProcPtr A pointer to the completion routine.

- i oResul t OSErr The function result.

N csCode | nt eger Always ki | | Al l Get Req for this function.
- at pSocket Byt e The socket number whose pending

PCGet Request functions are to be canceled.

Field descriptions

at pSocket The socket whose pending PGet Request functions are to
be canceled.

DESCRIPTION

The ATPKi | | Al | Get Req function cancels all pending PGet Request functions issued
on a specific socket without closing the socket. For each function executed asynchro-
nously, ATPKi | | Al | Get Req also calls the completion routine with the value

r eqAbor t ed (-1105) in the DO register. You should call the ATPKi | | Al | Get Req
function before closing a socket.

ASSEMBLY-LANGUAGE INFORMATION

To execute the ATPKi | | Al | Get Req function from assembly language, call the
_Control trap macro with a value of ki | | Al' | Get Req in the csCode field of the
parameter block. To execute this function from assembly language, you must also
specify the .ATP driver reference number.

RESULT CODES

NoErr 0 No error
cbNot Found -1102 Control block not found; no pending asynchronous calls

6-42 ATP Reference

CHAPTER 6

AppleTalk Transaction Protocol (ATP)

PRelRspCB

DESCRIPTION

The PRel RspCB function cancels a PSendResponse function that is an exactly-once
transaction.

FUNCTI ON PRel RspCB (thePBPtr: ATPPBPtr; async: Bool ean): OSErr;

t hePBPt r A pointer to an ATP parameter block.

async A Boolean that indicates whether the function should be executed

asynchronously or synchronously. Specify TRUE for asynchronous
execution.

Parameter block

- i oConpl etion ProcPtr A pointer to the completion routine.

- i oResul t OSEr r The function result.

- csCode | nt eger Always r el RspCB for this function.

- at pSocket Byt e The number of the socket on which the
request was received.

- addr Bl ock Addr Bl ock The internet socket address of the source
of the request.

- transl D Byte The transaction ID of the request with

which the PSendResponse function to
be canceled is associated.

Field descriptions

at pSocket The number of the socket on which the request was received and
from which the PSendResponse function that is to be canceled
was sent.

addr Bl ock The internet socket address of the application that issued
the request.

transl D The transaction ID of the PSendResponse call to be canceled.

You can get the transaction ID from the r eqTI Dfield of the
PSendResponse parameter block queue entry.

The PRel RspCB function releases the queued parameter block for the exactly-once
transaction PSendResponse function without waiting for the release timer to expire
or for a TRel packet to be received; PRel RspCB returns a function result of noEr r
for the canceled PSendResponse call.

If you call PRel RspCB to cancel a transaction that is not an exactly-once service,
Rel RspCB returns a function result of cbNot Found for the PSendResponse call.

ATP Reference 6-43

(d1Vv) |020101d uonoesuel] yela|ddy n

CHAPTER 6

AppleTalk Transaction Protocol (ATP)

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

To execute the PRel RspCB function from assembly language, call the _Cont r ol trap
macro with a value of r el RspCB in the csCode field of the parameter block. To
execute this function from assembly language, you must also specify the .ATP driver
reference number.

noErr 0 No error
cbNot Found -1102 Control block not found; no pending asynchronous calls

Building a Buffer Data Structure

BuildBDS

You need to provide a buffer data structure (BDS) to hold data that comprises multiple
response packets whether you are sending the response data or receiving it. This section
describes a utility, Bui | dBDS, that ATP provides that allows you to create a BDS to be
used for this purpose.

DESCRIPTION

6-44

From the buffer that you supply, the Bui | dBDS function creates a buffer data structure
(BDS) to be used to hold data for ATP functions that send and receive response data.

FUNCTI ON Bui | dBDS (buffPtr: Ptr; bdsPtr: Ptr;
buffSi ze: Integer): Integer;

buf f Ptr A pointer to a data buffer.
buffSi ze The length in bytes of the buffer data structure.

The PSendResponse, PSendRequest , and PNSendRequest functions require a buffer
data structure of a specific format to be used to hold the response data. You can use the
Bui | dBDS function to create this data structure, or you can build it yourself from Pascal.

The Bui | dBDS function creates a buffer data structure consisting of an array of
elements—one for each response packet—to be used to hold response data. You pass
this function a pointer to the memory to be used for this buffer and the size in bytes

of the memory. You should allocate enough memory to hold the response data that
you are either sending or receiving. Because an entire response message cannot exceed
4624 bytes, the amount of memory that you allocate for this data structure should not
exceed this size.

ATP Reference

RESULT CODES

SEE ALSO

CHAPTER 6

AppleTalk Transaction Protocol (ATP)

Bui | dBDS creates up to eight elements for a buffer data structure. If you provide the
maximum space of 4624 bytes, Bui | dBDS returns eight elements; if the response
message is shorter and you specify fewer bytes, Bui | dBDS returns the equivalent
number of elements. Bui | dBDS returns as a function result the number of buffer data
structure elements that it creates. For more information about the BDS data structure,
see “The Buffer Data Structure” on page 6-20.

noErr 0 No error
par ankrr =50 Version number is too high

See “PSendResponse” on page 6-34, “PSendRequest” on page 6-24, and
“PNSendRequest” on page 6-27 for more information about the functions that
require a buffer data structure.

ATP Reference 6-45

(d1Vv) |020101d uonoesuel] yela|ddy n

CHAPTER 6

AppleTalk Transaction Protocol (ATP)

Summary of ATP

Pascal Summary

Constants
CONST
{csCodes}
nSendRequest = 248; {send request using a specific socket}
rel RspCB = 249; {rel ease RspCB}
cl oseATPSkt = 250; {close ATP socket}
addResponse = 251; {add response}
sendResponse = 252; {send response}
get Request = 253; {get request}
openATPSkt = 254, {open ATP socket}
sendRequest = 255; {send request}
rel TCB = 256; {rel ease TCB}
kill Get Req = 257, {kill getRequest}
kill SendReq = 258; {kill sendRequest}
kill Al'l Get Req = 259; {kill all getRequests for a socket}
{ATP fl ags}
at pXOval ue = 32; {ATP exactly-once bit}
at pEOWal ue = 16; { ATP end- of - message bit}
at pSTSval ue = 8; {ATP send-transmni ssion-status bit}
at pTl Dval i dval ue = 2; {ATP trans. IDvalid bit}
at pSendChkval ue = 1; {ATP send checksum bit}
Data Types

The Buffer Data Structure

TYPE BDSEl enent =

RECORD
buf f Si ze: I nt eger;
buf fPtr: Ptr;
dat aSi ze: I nt eger;
userBytes: Longlnt;
END;

6-46 Summary of ATP

CHAPTER 6

AppleTalk Transaction Protocol (ATP)

BDSType = ARRAY[O0..7] OF BDSEl enent;

BDSPt r = ~BDSType;

Bi t MapType = PACKED ARRAY[0. .7] OF Bool ean;

The Address Block Record

TYPE Addr Bl ock =
PACKED RECCORD

aNet : I nt eger;
aNode: Byt e;
aSocket : Byt e;
END;
The ATP Parameter Block
TYPE ATPPar anBl ock =
PACKED RECORD
gLi nk: QEl enPtr;
gType: | nt eger;
i oTr ap: I nt eger;
i oCndAddr : Ptr;
i oCompl etion: ProcPtr;
i oResul t: CSErr;
user Dat a: Longi nt;
reqTl D | nt eger;
i oRef Num I nt eger;
csCode: I nt eger;
at pSocket : Byt e;

CASE MPPPar mlype OF
SendRequest Parm
SendResponsePar m
Cet Request Parm
AddResponsePar m
Ki I | SendRegPar m

(at pFl ags:
addr Bl ock:

reqLengt h:
reqPoi nter:
bdsPoi nter:
CASE MPPPar mlype OF
SendRequest Parm
(nunOf Buf f s:

Summary of ATP

{networ k nunber}
{node | D}
{socket nunber}

{next queue entry}
{queue type}

{routine trap}

{routine address}

{conpl etion routine}
{result code}

{ ATP user bytes}
{request transaction |ID}
{driver reference nunber}
{call comuand code }

{ automatically set}

{currBitMap or socket nunber}

Byt e; {control infornmation}
Addr Bl ock;

{source/ dest. socket address}
I nteger; {request/response |ength}
Ptr; {ptr to request/response dat a}
Ptr; {ptr to response BDS}
Byt e; {nunber of responses expected}

6-47

(d1Vv) |020101d uonoesuel] yela|ddy n

CHAPTER 6

AppleTalk Transaction Protocol (ATP)

ti meQut Val : Byt e; {tinmeout interval}
nunof Resps: Byt e; {nunber of responses }
{ actually received}
retryCount: Byt e; {nunber of retries}
i nt Buf f: Integer; {used internally for PNSendRequest}
TRel Ti ne: Byt e); {TRel ease tinme for extended }
{ send request}
SendResponsePar m
(fillerO: Byt e; { nunf Buf f s}
bdsSi ze: Byt e; {nunber of BDS el ement s}
transl D I nteger);{transaction | D}
Cet Request Parm
(bi t Map: Byt e; {bi t map}
fillerl: Byt e);
AddResponsePar m
(rspNum Byt e; {sequence nunber}
filler2: Byt e);
Ki I | SendRegPar m
(aKi || QEl: Ptr)); {pointer to queue elenent to cancel}
END;
ATPPBPtr = ~ATPPar anBl ock;
Routines
Sending an ATP Request
FUNCTI ON PSendRequest (thePBPtr: ATPPBPt; async: Bool ean): OSErr;
FUNCTI ON PNSendRequest (thePBPtr: ATPPBPtr; async: Bool ean): OSErr;
Opening and Closing an ATP Socket
FUNCTI ON POpenATPSkt (thePBptr: ATPPBPtr; async: Bool ean): OSErr;
FUNCTI ON PCl 0seATPSkt (thePBPtr: ATPPBPtr; async: Boolean): OSErr;
Setting Up a Socket to Listen for Requests
FUNCTI ON PGet Request (thePBPtr: ATPPBPtr; async: Bool ean): OSErr;
Responding to Requests
FUNCTI ON PSendResponse (thePBPtr: ATPPBPtr; async: Boolean): OSErr;
FUNCTI ON PAddResponse (thePBPtr: ATPPBPtr; async: Bool ean): OSErr;

6-48 Summary of ATP

CHAPTER 6

AppleTalk Transaction Protocol (ATP)

Canceling Pending ATP Functions

FUNCTI ON PKi | | SendReq (thePBPtr: ATPPBPtr; async: Boolean): OSErr;

FUNCTI ON PRel TCB (thePBPtr: ATPPBPtr; async: Bool ean): OSErr;

FUNCTI ON PKi | | Get Req (thePBPtr: ATPPBPtr; async: Bool ean): OSErr;

FUNCTI ON ATPKi | | Al | Get Req (thePBPtr: ATPPBPtr; async: Boolean): OSErr;

FUNCTI ON PRel RspCB (thePBPtr: ATPPBPtr; async: Bool ean): OSErr;

Building a Buffer Data Structure

FUNCTI ON Bui | dBDS (buffPtr: Ptr; bdsPtr: Ptr; buffSize: Integer):
I nt eger;

C Summary

Constants

[*ATP par amet er constants*/

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne

ATPi oConpl etion ATP.i oConpl etion
ATPi oResul t ATP. i oResul t
ATPuser Dat a ATP. user Dat a
ATPreqTI D ATP. reqTI D

ATPi oRef Num ATP. i oRef Num
ATPcsCode ATP. csCode

ATPat pSocket ATP. at pSocket
ATPat pFl ags ATP. at pFl ags
ATPaddr Bl ock ATP. addr Bl ock
ATPreqLengt h ATP. regLengt h
ATPr eqPoi nt er ATP. r eqPoi nt er
ATPbdsPoi nt er ATP. bdsPoi nt er
ATPti meCut Val SREQ ti neCQut Val
ATPnumX Resps SREQ nuntX Resps
ATPretryCount SREQ ret ryCount
ATPnun®f Buf f s OTHL. u0. nuntf Buf f s
ATPbi t Map OTHL. u0. bi t Map
ATPrspNum OTHL. uO. r spNum
ATPbdsSi ze OTH2. bdsSi ze
ATPtranslI D OTH2. transl D
ATPaKi I | QEI KILL. aKil | QEl

Summary of ATP

6-49

(d1Vv) |020101d uonoesuel] yela|ddy n

CHAPTER 6

AppleTalk Transaction Protocol (ATP)

/ *csCodes*/

enum { / *csCodes*/
nSendRequest = 248, /*send request using a specific */
/* socket*/
rel RspCB = 249, /*rel ease RspCB*/
cl oseATPSkt = 250, /*cl ose ATP socket*/
addResponse = 251, /*add response*/
sendResponse = 252, /*send response*/
get Request = 253, / *get request*/
openATPSkt = 254, /*open ATP socket*/
sendRequest = 255, /*send request*/
rel TCB = 256, [*rel ease TCB*/
kill Get Req = 257, /*Kkill getRequest™*/
kill SendReq = 258, /*kill sendRequest*/
kill Al'l Get Req = 259}; /*kill all getRequests for */

/* a socket*/

/*ATP flags*/

enum {
at pXOval ue = 32, /*ATP exactly-once bit*/
at peOWal ue = 16, /*ATP end- of - nessage bit*/
at pSTSval ue = 8, /*ATP send-transni ssion-status */
[* bit*/
at pTl Dval i dval ue = 2, /*ATP trans. ID valid bit*/
at pSendChkval ue = 1}; /*ATP send checksum bit*/

Data Types

The Buffer Data Structure

st ruct BDSEl enent {

short buff Si ze;
Ptr buffbtr;

short dat aSi ze;
| ong user Byt es;

1
typedef struct BDSEl emrent BDSEI enment ;

t ypedef BDSElI enent BDSType[8] ;
t ypedef BDSEl enent *BDSPtr;
typedef char BitMapType;

6-50 Summary of ATP

CHAPTER 6

AppleTalk Transaction Protocol (ATP)

The Address Block Record

struct AddrBl ock {
short aNet ;
unsi gned char aNode;
unsi gned char aSocket ;

b
t ypedef struct AddrBl ock Addr Bl ock;

The ATP Parameter Block

#def i ne MPPATPHeader \

El em *qLi nk;

short gType;

short i oTr ap;

Ptr i oCrdAddr ;
ProcPtr i oConpl eti on;
OSEr r i oResul t;

| ong user Dat a;
short reqTl D

short i oRef Num
short csCode;

t ypedef struct {
MPPATPHeader
} MPPpar rs;

#def i ne MOREATPHeader \

char at pSocket ;
char at pFl ags;
Addr Bl ock addr Bl ock;
short reqLengt h;
Ptr reqPoi nter;
Ptr bdsPoi nter;

typedef struct {
MPPATPHeader
MOREATPHeader
} ATPpar rs;

Summary of ATP

/*next queue entry*/\

/*queue type*/\

/*routine trap*/\

/*routine address*/\

/*conpl etion routine*/\

/*result code*/\

/*command result (ATP user bytes)*/\
/*request transaction |D*/\

/[*driver reference nunber*/\

/*call command code*/

/*currbitmap for requests or ATP */\
/* socket nunber*/\

/[*control information*/\

/*source/ dest. socket address*/\
/*request/response | ength*/\
/*pointer to request/response data*/\
/*pointer to response BDS*/

6-51

(d1Vv) |020101d uonoesuel] yela|ddy n

CHAPTER 6

AppleTalk Transaction Protocol (ATP)

t ypedef struct {

MPPATPHeader
MOREATPHeader
char filler; [* nunmOf Buf f s*/
char ti meQut Val ; /*tinmeout interval*/
char nuntf Resps; /*nunmber of responses actually */
/* received*/
char retryCount; /[*nunber of retries*/
short i nt Buff; /*used internally for NSendRequest*/
char TRel Ti ne; /*TRel ease tine for extended send */

/* request*/
} SendReqgpar ns;

typedef struct {

MPPATPHeader
MOREATPHeader
uni on {
char bi t Map; /*bitmap recei ved*/
char nuntO Buf f s; /*nunber of responses being sent*/
char rspNum / *sequence nunber*/
} u0;
} ATPmi sci,;
typedef struct {
MPPATPHeader
MOREATPHeader
char filler;
char bdsSi ze; [*nunber of BDS el ement s*/
short transl D /*transaction |D*/
} ATPmi sc2;
typedef struct {
MPPATPHeader
MOREATPHeader
Ptr aKi | | Qel ; /*pointer to i/o queue elenment to */
/* cancel */
}Ki | | par ns;
uni on ATPPar anmBl ock {
ATPpar ns ATP; /*general ATP parns*/
SendReqpar ns SREQ /*send request parnms*/
ATPni scl OTH1; /*m scel | aneous par ns*/
ATPni sc2 OTHZ; /*m scel | aneous parns*/
Ki |l parns KILL; /*kill request parnms*/

b

6-52 Summary of ATP

CHAPTER 6

AppleTalk Transaction Protocol (ATP)

t ypedef uni on ATPPar anBl ock ATPPar anBl ock;

t ypedef ATPParanBl ock * ATPPBPt r

Routines

Sending an ATP Request

pascal OSErr PSendRequest (ATPPBPt r t hePBPtr, Bool ean async);
pascal OSErr PNSendRequest (ATPPBPtr thePBPtr, Bool ean async);

Opening and Closing an ATP Socket

(ATPPBPt r
(ATPPBPt r

pascal OSErr
pascal OSErr

Setting Up a Socket to Listen for Requests
(ATPPBPt 1

pascal OSErr

POpenATPSkt
PCl oseATPSkt

PCet Request

Responding to Requests

pascal OSErr
pascal OSErr

PSendResponse (ATPPBPt r
(ATPPBPt r

PAddResponse

Canceling Pending ATP Functions

pascal OSErr
pascal OSErr
pascal OSErr
pascal OSErr

pascal OSErr

PKi | | SendReq
PRel TCB

PKi | | Get Req
ATPKi | 1 Al | Get Req

(ATPPBPt r
(ATPPBP! r

PRel RspCB

Building a Buffer Data Structure

pascal short

Bui | dBDS

Summary of ATP

(ATPPBPt r
(ATPPBPt r
(ATPPBPt r

t hePBpt r, Bool ean
t hePBPt r, Bool ean

t hePBPt r, Bool ean

t hePBPt r, Bool ean
t hePBPt r, Bool ean

t hePBPt r, Bool ean
t hePBPt r, Bool ean
t hePBPt r, Bool ean

t hePBPt r, Bool ean
t hePBPt r, Bool ean

async) ;
async) ;

async) ;

async) ;
async) ;

async);
async) ;
async) ;

async) ;
async) ;

(Ptr buffPtr,Ptr bdsPtr,short buffSize);

6-53

(d1Vv) |020101d uonoesuel] yela|ddy n

CHAPTER 6

AppleTalk Transaction Protocol (ATP)

Assembly-Language Summary

Constants

ATP Header

at pContr ol EQU O ;control field (byte)

at pBi t map EQU 1 ;bitmap (requests only) (byte)

at pRespNo EQU 1 ; response nunber (responses only) (byte)
atpTransl D EQU 2 ;transaction I D (word)

at pUser Dat a EQU 4 ;start of user data (long)

at pHdSz EQU 8 ; size of ATP header

ATP Control Field

at pReqCode EQU %40 ; request code after masking

at pRspCode EQU $80 ; response code after nasking

at pRel Code EQU $Q0 ;rel ease code after masking

at pXoBi t EQU 5 ; bit nunmber of exactly-once bit

at peOVBi t EQU 4 ; bit number of end-of-nessage bit

at pSTSBi t EQU 3 ;send transm ssion status bit nunber
f | agMask EQU $3F ;mask for just flags

contr ol Mask EQU $F8 ;mask for good control bits

ATP Type Code

atp EQU $3 ; ATP type code (in DDP header)

ATP Limits

at pMaxNum EQU 8 ; maxi mum nunber of responses per request
at pMaxDat a EQU $242 ; maxi mum data size in ATP packet
ATP Command Codes

nSendRequest EQU 248 ; PNSendRequest code

rel RspCB EQU 249 ;rel ease RspCB

cl oseATPSkt EQU 250 ; cl ose ATP socket

addResponse EQU 251 ;add response code

sendResponse EQU 252 ; send response code

get Request EQU 253 ; get request code

6-54 Summary of ATP

CHAPTER 6

AppleTalk Transaction Protocol (ATP)

openATPSkt EQU 254 ; open ATP socket

sendRequest EQU 255 ; send request code

rel TCB EQU 256 ;rel ease TCB

kill Get Req EQU 257 ;kill Get Request

kill SendReq EQU 258 ; kill SendRequest

kill Al'l GetReq EQU 259 ;kill all getRequests for a socket

ATPQueue Element Standard Structure

;argunents passed in the CSParam area

at pSocket EQU $1C ; socket nunber is first paranmeter [byte]
at pFl ags EQU $1D ;flag [byte]

addr Bl ock EQU $1E ;start of address bl ock

reqlLength EQU $22 ;size of request buffer [word]

r eqPoi nt er EQU $24 ;pointer to request buffer or data
bdsPoi nt er EQU $28 ;pointer to buffer data structure (BDS)
guUAr ea EQU $2C ;start of general -use area

user Dat a EQU $12 ;user bytes

ATP Bits

sendCHK EQU O ;bit nunmber of send-checksumbit in flags
tidvalid EQU 1 ;bit set when TID valid in SendRequest

Data Structures

Buffer Data Structure (BDS)

bdsBuf f Sz EQU O ;send: data length
; receive: buffer length

bdsBuf f Adr EQU 2 ;send: data address
; receive: buffer address
bdsDat aSz EQU 6 ;send: used internally

; receive: data length
;send: 4 user bytes

; receive: 4 user bytes
bdsEnt rySz EQU 12 ;size of a BDS entry

bdsUser Dat a EQU 8

Summary of ATP 6-55

(d1Vv) |020101d uonoesuel] yela|ddy n

CHAPTER 6

AppleTalk Transaction Protocol (ATP)

ATP Parameter Block Common Fields

0
4
6
8
12
16
18
22
24
26
28

gLi nk
qType

i oTrap

i oCndAddr

i oConpl etion

i oResul t

user Dat a
reqTl D

i oRef Num
csCode

at pSocket

long
word
word
long
long
word
long
word
word
word
byte

SendRequest Parameter Variant

26
28
29
30
34
36
40
44
45
46
47
50

NSendRequest Parameter Variant

22
26
29
30
34
36
40
44
45
46
47
50

csCode
currBi t Map
at pFl ags
addr Bl ock
regLength
regPoi nt er
bdsPoi nt er
nunOf Buf f s
ti meCut Val
nuntX Resps
ret ryCount
Trel Ti me

reqTl D
csCode

at pFl ags
addr Bl ock
regLength
reqPoi nt er
bdsPoi nt er
nuntX Buf f s
ti meCut Val
nuntX Resps
r et r yCount
Trel Ti me

word
byte
byte
long
word
long
long
byte
byte
byte
byte
byte

word
word
byte
long
word
long
long
byte
byte
byte
byte
byte

OpenATPSkt Parameter Variant

26
30

6-56

csCode
addr Bl ock

word
long

Summary of ATP

reserved

reserved

reserved

reserved

address of completion routine
result code

user bytes

request transaction ID

driver reference number
command code

current bitmap or socket number

command code; always sendRequest
current bitmap

control information

destination socket address

request size in bytes

pointer to request data

pointer to response BDS

number of responses expected
timeout interval

number of responses received
number of retries

release time for extended send request

request transaction ID

command code; always nSendRequest
control information

destination socket address

request size in bytes

pointer to request data

pointer to response BDS

number of responses expected
timeout interval

number of responses received

number of retries

release time for extended send request

command code; always openATPSkt
socket request specification

CHAPTER 6

AppleTalk Transaction Protocol (ATP)

CloseATPSkt Parameter Variant

26

GetRequest Parameter Variant

22
26
29
30
34
36
44

csCode word

reqTl D word
csCode word
at pFl ags byte
addr Bl ock long
reqLengt h word
r eqPoi nt er long
bi t Map byte

command code; always cl 0seATPSkt

request transaction ID

command code; always get Request
control information

destination socket address

request size in bytes

pointer to request data

current bitmap

SendResponse Parameter Variant

26
29
30
40
44
45
46

csCode word
at pFl ags byte
addr Bl ock long

bdsPoi nt er long
numcf Buf f s byte
bdsSi ze byte
transl D word

command code; always sendResponse
control information

destination socket address

pointer to response BDS

number of responses expected

BDS size in elements

transaction ID

AddResponse Parameter Variant

26
29
30
34
36
44
46

KillSendReq Parameter Variant

26
44

csCode word
at pFl ags byte
addr Bl ock long
regLength word
reqPoi nt er long
rspNum byte
transl D word

csCode word
aki | | CEl long

RelTCB Parameter Variant

26
30
46

KillGetReq Parameter Variant

26
44

csCode word
addr Bl ock long
transl D word

csCode word
akKi | | QEl long

Summary of ATP

command code; always addResponse
control information

destination socket address

response size in bytes

pointer to response data

sequence number

transaction ID

command code; always ki | | SendReq
pointer to queue element of function to be removed

command code; always r el TCB
destination socket address of request
transaction ID of request to be canceled

command code; always ki | | Get Req
pointer to queue element of function to be removed

6-57

(d1Vv) |020101d uonoesuel] yela|ddy n

CHAPTER 6

AppleTalk Transaction Protocol (ATP)

KillAllGetReq Parameter Variant

26 csCod

e

word

command code; always ki | | Al | Get Req

RelRspCB Parameter Variant

26 csCode word command code; always r el RspCB
30 addr Bl ock long internet socket address of the source of the request
46 translD word transaction ID of request with which the PSendResponse
function to be canceled is associated
Result Codes
noErr 0 No error
par anEr r =50 Version number is too high
reqFai | ed -1096 Retry count exceeded
t ooManyReqs -1097 Too many concurrent requests
t ooMany Skt s -1098 Too many responding sockets
badATPSkt -1099 Bad responding socket
badBuf f Num -1100 Sequence number out of range
noRel Err -1101 No release received
cbNot Found -1102 The aKi | | QEl parameter does not point to a PSendRequest or
PNSendRequest queue element
noSendResp -1103 PAddResponse issued before PSendResponse
noDat aAr ea -1104 Too many outstanding ATP calls
r eqAbor t ed -1105 Request canceled
6-58 Summary of ATP

	 Title
	 Copyright
	 Table of Contents
	 Figures, Tables, and Listings
	 Preface
	 Introduction to AppleTalk TOC
	 Introduction to AppleTalk
	 AppleTalk Utilities TOC
	 AppleTalk Utilities
	 Name-Binding Protocol (NBP) TOC
	 Name-Binding Protocol (NBP)
	 Zone Information Protocol (ZIP) TOC
	 Zone Information Protocol (ZIP)
	 AppleTalk Data Stream Protocol (ADSP) TOC
	 AppleTalk Data Stream Protocol (ADSP)
	 AppleTalk Transaction Protocol (ATP) TOC
	AppleTalk Transaction Protocol (ATP)
	About ATP
	The ATP Packet Format
	At-Least-Once and Exactly-Once Transactions
	The Buffer Data Structure
	ATP Flags

	Using ATP
	Writing a Requester ATP Application
	Creating a Buffer Data Structure
	Specifying the Parameters for the Send Request Fun...

	Writing a Responder ATP Application
	Opening and Setting Up a Socket to Receive Request...
	Responding to Requests

	Canceling an ATP Function

	ATP Reference
	Data Structures
	The Buffer Data Structure
	The ATP Parameter Block
	The Address Block Record

	Routines
	Sending an ATP Request
	Opening and Closing an ATP Socket
	Setting Up a Socket to Listen for Requests
	Responding to Requests
	Canceling Pending ATP Functions
	Building a Buffer Data Structure

	Summary of ATP
	Pascal Summary
	Constants
	Data Types
	Routines

	C Summary
	Constants
	Data Types
	Routines

	Assembly-Language Summary
	Constants
	Data Structures

	Result Codes

	 Datagram Delivery Protocol (DDP) TOC
	 Datagram Delivery Protocol (DDP)
	 AppleTalk Session Protocol (ASP) TOC
	 AppleTalk Session Protocol (ASP)
	 AppleTalk Filing Protocol (AFP) TOC
	 AppleTalk Filing Protocol (AFP)
	 Link-Access Protocol (LAP) Manager TOC
	 Link-Access Protocol (LAP) Manager
	 Ethernet, Token Ring, Fiber Distribution Data Interface TOC
	 Ethernet, Token Ring, Fiber Distribution Data Interface
	 Multinode Architecture TOC
	 Multinode Architecture
	 Glossary
	 Index
	 Colophon

