

C H A P T E R 6

6

A
ppleTalk Transaction P

rotocol (AT

AppleTalk Transaction Protocol (ATP) 6

This chapter describes the AppleTalk Transaction Protocol (ATP) that you use to send
a request from one application or process to another that can satisfy the request and
respond to it. Because ATP is transaction-based—that is, the response data is bound to
the request data and the exchange of information is limited to the transaction—you do
not incur the overhead entailed in establishing, maintaining, and breaking a connection
that is associated with connection-oriented protocols, such as ADSP. However, you can
transfer only a limited amount of data using ATP.

You should read this chapter if you want to write an application that requires reliable
delivery of data while allowing one side of the communication to ask the other side to
perform a service and return a small amount of data.

For an overview of ATP and how it fits within the AppleTalk protocol stack, read the
chapter “Introduction to AppleTalk” in this book, which also introduces and defines
some of the terminology used in this chapter. For complete explanation of the ATP
specification, see Inside AppleTalk, second edition.

About ATP 6

The AppleTalk Transaction Protocol offers a simple, efficient means of transferring
small amounts of data across a network; it lets one network entity request information
of another entity that possesses only the ability to respond to the request. ATP ensures
that data is delivered without error or packet loss.

ATP communication is based on the concept of a transaction: one party, the requester,
makes a request of another party, the responder, to perform a service and return a
response. This discussion uses the term requester to refer to an application that uses ATP
to make a request and responder to refer to an application that uses ATP to respond to
a request.

When it receives a request, the responder application performs the necessary processing
to service it and sends a response message back to the requester, completing the
transaction. The response message can be data that reports the result of the trans-
action or information produced as a result of the processing. Here is how a basic
transaction occurs:

■ The requester application calls the .ATP interface, and the .ATP driver on the
requester side sends the request to the .ATP driver on the responder side.

■ The .ATP driver on the responder side passes the request to the responder application,
which is listening for incoming .ATP requests.

■ The responder application satisfies the request and prepares a response, then calls
the ATP interface to transmit the response via the .ATP driver back to the requester
application.

Figure 6-1 shows this interaction.
About ATP 6-3

P
)

C H A P T E R 6

AppleTalk Transaction Protocol (ATP)

Figure 6-1 An ATP transaction

The amount of data that a requester application can send is limited to 578 bytes; the
amount of data that a responder application can return is limited to 4624 bytes. The ATP
programming interface includes a function that lets you add one or more single packets
to follow the initial response, up to a total of eight packets including the initial number
of packets sent, if you do not send eight packets in the initial response.

Note
Although you can use the ATP add-response function to extend the
amount of response data, if you intend for your application to transfer
large amounts of data, you should choose a transport protocol other
than ATP. For example, you can use ADSP, which allows you to send
and receive continuous streams of data. ◆

You can implement applications that use ATP to perform network-based transactions in
the following two ways:

■ You can write a single application that handles both the responder and requester
actions of an ATP transaction and run that application on two networked nodes. This
method allows each application to act as either the requester or the responder. The
interaction remains asymmetric; only one side can control the communication during
a single transaction. However, each side has the capacity to initiate a transaction by
sending a request to the other side.

■ You can write two distinct applications, one application that implements only the
requester part of a transaction and another application that implements only the
responder side. This scenario lends itself to a client-server model in which many
nodes on a network run the requester application (client), while one or more nodes
run the responder application (server); one server can respond to transaction requests
from various clients.

ATP dialog

ATP transaction

requester

ATP transaction

responder

ATP

responding

end

ATP

requesting

end

6-4 About ATP

C H A P T E R 6

AppleTalk Transaction Protocol (ATP)

6

A
ppleTalk Transaction P

rotocol (AT

ATP is a direct client of DDP, and it adds reliable delivery of data to the transport
delivery services that DDP provides. Figure 6-2 shows ATP and the underlying
protocol stack.

Figure 6-2 ATP and its underlying protocols

The ATP Packet Format 6
An ATP packet includes an 8-byte header followed by up to 578 bytes of data. An ATP
packet is preceded by the DDP header that, in turn, is preceded by the data-link header,
referred to as the frame header.

The ATP header contains the following information:

■ The first byte consists of control information. Bits within this byte are set to identify
aspects of a request or a response function.

■ The second byte contains a bitmap/sequence number. This field is 8 bits wide, and
its use and significance depend on whether the ATP packet is a request packet or a
response packet. For request packets, this field is referred to as the transaction
bitmap, and it identifies the number of buffers that a requester application has
reserved for the response data. For response packets, this field is referred to as the
ATP sequence number, and it is used to identify the sequential position of the
response packet in the complete response message; ATP uses the sequence number
to manage and handle lost or out-of-sequence response packets.

ATP

DDP

LAP Manager

Port
About ATP 6-5

P
)

C H A P T E R 6

AppleTalk Transaction Protocol (ATP)

■ The third and fourth bytes carry the transaction ID assigned to a request and used by
the response to that request.

■ The fifth through eighth bytes carry user data; an application can use these bytes for
its own purposes, for example, to transfer command information.

The ATP data follows the header. It can consist of from 0 to 578 bytes. An ATP packet is
enclosed in a DDP datagram that is enclosed in a data-link frame. Figure 6-3 shows a
close-up view of the first byte of the ATP header, the control information byte.

Figure 6-3 The ATP packet header control information byte

The Control Information Byte 6

ATP applications call response and request functions that generate request and
response packets. (ATP uses the release packet internally.) When set, the bits have
the following meanings:

The Bitmap/Sequence Number 6

ATP ensures reliable delivery of data. This means that ATP retransmits all lost or
dropped packets, and if it is unable to complete a transaction properly, ATP returns an
error as the function result. To receive all the packets that make up a response message,
a requester application must provide enough buffer space to hold the data. A request
message consists of a single packet, while each response message can contain up to eight
response packets.

Bit Meaning

0 Use the DDP checksum feature for this packet.

1 ATP has assigned the request transaction ID; the TID field value is now valid.

2 This request uses an extended parameter block.

3 To the requester: retransmit the request immediately (send-transmission status).

4 This is the last packet of the response message (end of message).

5 This request is an exactly-once transaction.

Chksum
TID valid

XCall

STS
EOM

XO

7 6 5 4 3 2 1 0

Reserved

Supplied

by interface
6-6 About ATP

C H A P T E R 6

AppleTalk Transaction Protocol (ATP)

6

A
ppleTalk Transaction P

rotocol (AT

Response packets are numbered from 0 to 7. ATP uses the sequence number to manage
the transmission and receipt of response packets; the packet header ATP sequence
number field contains 8 bits, 1 for each response packet.

ATP sets the sequence number in the request header to tell the .ATP driver code on the
responder side which response packets the requester has not received. When a requester
does not receive a complete response message, the .ATP driver code on the responder
side can then send again only the packets that the requester side has not received, based
on the bit settings of the transaction sequence number. ATP handles the retransmission
of data internally without requiring any action on the part of your application. For
information about the buffer records, see “The Buffer Data Structure” on page 6-20.

The Transaction ID 6

The third and fourth bytes of the ATP header carry a 16-bit transaction ID. The .ATP
driver code on the requester side of a transaction assigns a unique transaction ID to each
request that a requester application makes. The responder application that services the
request includes this number as a parameter to the response call that it issues to send
its response back to the requester. The transaction ID ties together the request and its
response, ensuring that ATP delivers the correct data in response to each request. An
application can issue and have pending multiple concurrent asynchronous requests; ATP
uses the transaction ID to keep track of them.

User Bytes 6

ATP does not concern itself with the last 4 bytes of the ATP header. They are reserved for
your use. You can use these bytes for any purpose prearranged by the requester and
responder applications. The ATP functions include a parameter that you use to specify
this data.

At-Least-Once and Exactly-Once Transactions 6
ATP supports two types of transactions: at-least-once transactions and exactly-once
transactions. An at-least-once transaction ensures that the responder application
receives every request directed to it at least once. However, this mode allows for the
possibility of a responder application receiving duplicate requests.

For example, when you send a request that the .ATP driver code on the responder side
receives, it passes the request on to the responder application. Your responder applica-
tion then processes the request and creates a response to it. The ATP responder driver
sends that response to your requester application. If the response is lost during the
transmission, ATP retransmits the request after a period of time passes; you can set
a value to control this timeout period. The ATP responder driver code receives the
duplicate request and repeats the cycle of passing it on to your responder application for
processing. At-least-once transactions ensure that the data is delivered at least once, and
possibly more than once. You can use this transaction mode if it does not have adverse
affects on the responder application.
About ATP 6-7

P
)

C H A P T E R 6

AppleTalk Transaction Protocol (ATP)

An exactly-once transaction ensures that the responder application receives a specific
request only once. These are also referred to as XO, as in exactly-once transactions.
To create this result, the ATP responder code saves the response packets until the
transaction is complete. This means that ATP itself can retransmit packets without
requiring that your responder application reprocess the request.

The ATP responder code saves the response packets until the ATP code on the requester
side indicates that it has received all of the packets. The ATP code on the requester side
sends a transaction release packet to the ATP code on the responder side to signal that
the requester application has received all of the response packets, so that ATP can now
release them.

Because the transaction release packet could also be lost during transmission, ATP backs
up this process with a transaction release timer. ATP marks packets saved for retrans-
mission with a timestamp. When a packet ages beyond the amount of time that you set
for the responder’s release timer, ATP discards the packet.

You can set the release timer value that the ATP code on the responder end uses from
your requester application; the send request functions include a release timer parameter
for this purpose. For more information about this parameter, see “PSendRequest” on
page 6-24 or “PNSendRequest” on page 6-27.

The Buffer Data Structure 6
The responder application needs to provide space to store the data to be sent to the
requester until the requester application has received all of the data. The requester
application needs to provide space to receive the data that it expects to receive as a result
of the transaction. Each response can include up to eight packets. To handle the storage
of these packets, the ATP client application at each end of the transaction provides a
buffer data structure. The buffer data structure is designed to allow ATP to easily
manage reliable transfer of multiple packets belonging to a single response message. A
buffer data structure consists of an array of eight elements, each of which contains a
pointer to a record of type BDSElement.

Each record contains a field for the size of the buffer created to hold the data and a
pointer to that buffer. It also contains fields for the size of the data in the response packet
and the user bytes that were passed in the packet header, if these bytes were used to
communicate additional information. You can create your own buffer data structures,
or you can use the ATP utility provided for this purpose. For a description of the BDS
data type, see “The Buffer Data Structure” on page 6-20. For a description of the utility
that you can use to build the buffer data structure, see “BuildBDS” on page 6-44.

ATP Flags 6
Many of the functions that you use for an ATP transaction pass control information in an
ATP parameter block field called atpFlags. This field comprises a single byte whose
bits you can set to signal control information, if appropriate. In some cases, ATP sets
these flag bits for its own use. The discussion of each function that uses these flags
includes the control information about the bits specific to that function. Table 6-1 shows
the Pascal and assembly constants defined for these bits.
6-8 About ATP

C H A P T E R 6

AppleTalk Transaction Protocol (ATP)

6

A
ppleTalk Transaction P

rotocol (AT

Using ATP 6

This section describes how to use ATP to

■ send a transaction request to a responder application that is an ATP socket client

■ receive a request from an ATP requester application and respond to it

■ cancel pending ATP requests and responses

You can write a single ATP application that includes both the responder and requester
code or two ATP applications that separately provide the responder and the requester
services. This section describes how to write a requester application, and then it describes
how to write a responder application.

Writing a Requester ATP Application 6
You use the PSendRequest function or the PNSendRequest function to send an ATP
request to another socket.

Before you can use ATP, you must first open the .MPP driver, which in turn opens the
.ATP driver. Use the Device Manager’s OpenDriver function to open the .MPP driver.
Even if you suspect that the .MPP and the .ATP drivers are open, you should call
the OpenDriver function for the .MPP driver to ensure that this is the case. Calling
OpenDriver for a driver that is already open will not produce harmful repercussions.
See the chapter “Device Manager” in Inside Macintosh: Devices for information on
the OpenDriver function. Do not close the .MPP driver when you are finished using

Table 6-1 Constants for ATP flag bits

Bit
Pascal
constant

Assembly
constant Meaning

0 atpSendChkvalue sendChk Use DDP’s checksum feature when sending a
packet.

1 atpTIDValidvalue tidValid The transaction ID value that ATP assigns is set;
you can check the reqTID field now.

2 None atpXcall This exactly-once transaction request uses an
extended parameter block, the last field of which
(TRelTime) is set to the release timer value for
the ATP responder side.

3 atpSTSvalue atpSTSBit The ATP requester must retransmit a request
immediately. (ATP sets the send-transmission-
status bit, which it uses internally.)

4 atpEOMvalue atpEOMBit The last packet in this response is the end
of the message.

5 atpXOvalue atpXOBit This request is an exactly-once transaction.
Using ATP 6-9

P
)

C H A P T E R 6

AppleTalk Transaction Protocol (ATP)

ATP because other applications dependent on it or on the .ATP driver require that it
remain open.

To send an ATP request, follow these steps:

1. Create a buffer data structure (BDS) to hold the data that you expect to receive in
response to your request. For information on how to do this, see “Creating a Buffer
Data Structure” on page 6-12.

2. To allow ATP to assign the socket to be used to send the request, use the
PSendRequest function. To specify a particular socket to be used to send the request,
use the PNSendRequest function; in this case, you must call POpenATPSocket to
first open the socket (see “POpenATPSkt” on page 6-30 for information about this
function). For information on the parameters required for these functions, see
“Specifying the Parameters for the Send Request Function” on page 6-12.

3. You can get the transaction ID that ATP assigns to a request from the reqTID
parameter; you need this ID to cancel a request. However, before you check this
field, make sure that the valid transaction ID (atpTIDValidvalue) bit (bit 1) of
the atpFlags parameter is set. ATP sets this bit to inform you that it has assigned
a transaction ID and that the reqTID field is now valid.

4. If you opened a socket to be used for the PNSendRequest call, close the socket using
PCloseATPSkt. See“PCloseATPSkt” on page 6-31 for information on how to use this
function. If you use the PSendRequest function, ATP allocates a socket and opens
and closes it for you.

The code in Listing 6-1 shows how to open a socket and issue a call to the PSendRequest
function. The code uses the BuildBDS function to create a buffer data structure to
hold the response data it expects in response. This segment of code assumes that the
application has already called the OpenDriver function to open the .MPP and
.ATP drivers.

Listing 6-1 Opening a socket and sending an ATP request

CONST
kMaxPacketSize = 578; {maximum packet size we can receive}
kNRespBuffs = 8; {you allow eight response buffers}
kOurRespBufSize = kMaxPacketSize * kNRespBuffs;

{response buffer size}
VAR

err: OSErr;
reqLength: Integer;
nBufs: Integer;
ref: Integer;
targetAddr: AddrBlock;
gAtpPBPtr: ATPPBPtr;
gReqBufPtr: Ptr;
gRespBufPtr: Ptr;
gSRespBdsPtr: BDSPtr;
6-10 Using ATP

C H A P T E R 6

AppleTalk Transaction Protocol (ATP)

6
A

ppleTalk Transaction P
rotocol (AT
BEGIN
gAtpPBPtr := ATPPBPtr(NewPtr(SizeOf(ATPParamBlock)));
gReqBufPtr := NewPtr(kMaxPacketSize);
gRespBufPtr := NewPtr(kOurRespBufSize);
gSRespBdsPtr := BDSPtr(NewPtr(SizeOf (BDSType)));
err := OpenDriver('MPP',ref);
if err <> noErr THEN DoErr(err);
WITH gAtpPBPtr^ DO

BEGIN
atpSocket := 0; {dynamically allocate a socket}
addrBlock.aNet := 0; {accept requests from anyone}
addrBlock.aNode := 0;
addrBlock.aSocket := 0;

END;
err := POpenATPSkt(gAtpPBPtr,false);{socket is returned in }

{ gAtpPBPtr^.atpSocket}

IF err <> noErr THEN DoErr(err);
IF gAtpPBPtr^.ioResult <> noErr THEN DoErr(err);

MyPrepareRequestData(gReqBufPtr,@reqLength);
{user routine that prepares the }
{ request data to be sent}

MyLocateTargetAddress(@targetAddr);
{user routine that locates the }
{ target machine}

{Set up your BDS structure.}
nBufs := BuildBDS(gRespBufPtr,Ptr(gSRespBdsPtr),kOurRespBufSize);

WITH gAtpPBPtr^ DO
BEGIN

atpFlags := atpXOvalue; {issue an exactly-once transaction}
addrBlock.aNet := targetAddr.aNet;

{set up the target machine}
addrBlock.aNode := targetAddr.aNode;
addrBlock.aSocket := targetAddr.aSocket;

reqLength := reqLength; {size of your request data}

reqPointer := gReqBufPtr; {pointer to actual request data}

numOfBuffs := nBufs; {number of responses expected}

bdsPointer := Ptr(gSRespBdsPtr); {your BDS pointer}

timeOutVal := 3; {timeout interval}

retryCount := 5; {number of retries}

END;

err := PSendRequest(gAtpPBPtr,false);
Using ATP 6-11

P
)

C H A P T E R 6

AppleTalk Transaction Protocol (ATP)
IF err <> noErr THEN DoErr(err);

MyProcessResponses(gAtpPBPtr^.bdsPointer,gAtpPBPtr^.numOfResps);

{user routine to process the }

{ response data returned}

{Clean up after you are done.}

DisposePtr(Ptr(gAtpPBPtr));

DisposePtr(gReqBufPtr);

DisposePtr(gRespBufPtr);

DisposePtr(Ptr(gSRespBdsPtr));

END.

Creating a Buffer Data Structure 6

Response data can comprise up to eight packets. ATP uses the organization of the buffer
data structure (BDS) to manage these packets and ensure their complete delivery. The BDS
must be an array of up to eight elements. You can create the buffer data structure yourself,
or you can use the BuildBDS function for this purpose. You pass BuildBDS a pointer to a
buffer and the length of the buffer, and it creates up to eight elements, one for each packet,
depending on the size of the buffer that you supply. BuildBDS returns as its function
result the number of elements that it creates; you pass this number and a pointer to the
buffer data structure to the PSendRequest or PNSendRequest function that you call to
issue the request. The memory that you allocate for the buffer must be nonrelocatable
until the PSendResponse call completes execution. After PSendResponse returns, you
should release this memory if you do not intend to reuse it.

Specifying the Parameters for the Send Request Function 6

When you call either the PSendRequest function or the PNSendRequest function to
send an ATP request, you must do these tasks:

■ Specify as the value of the addrBlock parameter the AppleTalk internet address of
the socket whose client responder application you are sending the request to.

■ Specify in the reqLength field the size in bytes of the request and in the reqPointer
field a pointer to the request data. The buffer that you use to store the request belongs
to ATP until the PSendRequest (or PNSendRequest) function completes execution,
after which you can either reuse the memory or release it.

■ Set the timeOutVal and retryCount parameters appropriately for your network.
See the following section, “Setting the Timeout and Retry Count Parameters.” If this is
an exactly-once request, set bit 5 (atpXOvalue) of the atpFlags parameter to ensure
that the responder application receives a specific request only once. For additional
information about exactly-once transactions, see “At-Least-Once and Exactly-Once
Transactions” on page 6-7.
6-12 Using ATP

C H A P T E R 6

AppleTalk Transaction Protocol (ATP)

6
A

ppleTalk Transaction P
rotocol (AT
You can send up to 4 bytes of additional information in the userData parameter,
and ATP will pass this to the responder application in the userData parameter of its
PGetRequest call. To make this parameter meaningful, both the requester and the
responder applications should agree on the use of these additional data bytes that are
separate from the request or response data sent in an ATP transaction.

Setting the Timeout and Retry Count Parameters 6

When a transaction does not complete on the first transmission, ATP retries it a number
of times. You can control ATP’s retry behavior by setting these two parameters: the
timeOutVal field and the retryCount field. The timeOutVal value determines
in seconds how long ATP waits before resending the original request packet; the
retryCount value determines how many times ATP retries to send the request.

ATP optimizes how it performs retries based on the response bitmap; ATP on the
requester side resends the request with the header bitmap indicating to the ATP driver
on the responder side which packets it should resend. (See the “The Bitmap/Sequence
Number” on page 6-6 for more information.) ATP makes this request to resend until it
receives all of the packets or it exhausts the number of retry attempts that you specify. If
ATP exhausts all of the retry attempts before the requester side receives all of the
packets, ATP returns an error.

To choose the correct timeout value and retry count combination, you should consider
the speed and complexity of your network—for example, take into account the degree of
traffic congestion and whether your network contains multiple routers. You can use the
AppleTalk Echo Protocol (AEP) echo socket to test the network performance and adjust
the values accordingly. For more information about using the AEP echo socket to test
network performance, see the chapter “Datagram Delivery Protocol (DDP)” in this book.
You can store various pairs of values in a preferences resource file so that you can easily
change them to adapt to the speed of the network.

If you want ATP to retry indefinitely to send the request, you can set the retryCount
parameter to 255. In this case, ATP will send the request repeatedly until either the ATP
responder end satisfies the request and sends back a response or you cancel the request.
To cancel a PSendRequest call, you can use either the PKillSendReq function or the
PRelTCB function. To cancel a PNSendRequest call, you can use the PKillSendReq
function only.

Setting the Release Timer Value 6

For exactly-once transactions, the ATP responder code saves the response packets until
the ATP code on the requester side indicates that it has received all of them. When this is
the case, the ATP code on the requester side sends a transaction release packet to tell the
ATP code on the responder side to release the response packets. Because this packet
could be dropped or lost during transmission, ATP uses a release timer to discard the
retained packets after a specified amount of time and to release the memory used to
store them.
Using ATP 6-13

P
)

C H A P T E R 6

AppleTalk Transaction Protocol (ATP)

If the nodes at both ends of the ATP connection are running AppleTalk Phase 2
drivers, you can control the release timer value that determines when ATP releases
the response packets by setting the 3 lower bits of the TRelTime parameter to one
of the following values:

Writing a Responder ATP Application 6
A responder application receives incoming ATP requests, processes them, and sends a
response to the requester application. To write a responder application, you open a
socket that you set up to listen for requests. When you receive a request, you process it
and send a response back to the requester application. The response can consist of a
message reporting the outcome of the processing you performed or data resulting from
the processing.

Before you can use ATP, you must first open the .MPP driver, which in turn opens the
.ATP driver. Use the Device Manager’s OpenDriver function to open the .MPP driver.
Even if you suspect that the .MPP and the .ATP drivers are open, you should call the
OpenDriver function for the .MPP driver to ensure that this is the case. Calling
OpenDriver for a driver that is already open will not produce harmful repercussions.
See the chapter “Device Manager” in Inside Macintosh: Devices for information on the
OpenDriver function. Do not close the .MPP driver when you are finished using ATP
because other applications dependent on it or the .ATP driver require that it remain open.

Opening and Setting Up a Socket to Receive Requests 6

To open a socket to receive incoming requests, you use the following procedure:

1. To open the socket, call the POpenATPSkt function, providing it with values as
follows:
n To direct ATP to open a specific socket, provide the number of that socket as the

value of the atpSocket parameter; to allow ATP to dynamically assign a socket,
specify 0 as the value of this field.

n To filter the sockets from which you will accept requests, set the internet socket
address fields of the addrBlock parameter; to accept requests from any socket,
set all three fields to 0. You can filter requests based on network, socket, or node
numbers. For example, to accept requests from all sockets on the node whose ID
is 112, you set the network and socket number fields of the address block record to
0 and the node ID field to 112.

TRelTime
Setting of
release timer

000 30 seconds

001 1 minute

010 4 minutes

100 8 minutes
6-14 Using ATP

C H A P T E R 6

AppleTalk Transaction Protocol (ATP)

6
A

ppleTalk Transaction P
rotocol (AT

2. To set up the socket to receive requests, call the PGetRequest function, which listens
for an incoming request on the socket you specify. You provide it with the parameter
values as follows:
n Allocate a buffer to store the incoming request; you pass PGetRequest a pointer

to this buffer and the length of the buffer. Unless you know the exact size of the
incoming request, allocate at least 578 bytes of nonrelocatable memory for this
buffer to accommodate the maximum request packet size. Set the reqPointer
parameter to point to the buffer, and set the reqLength parameter to the size in
bytes of the buffer.

n Set the atpSocket parameter to the number of the socket to be used to listen for
the request; this is the socket you opened through the POpenATPSkt call.

n Set the ioCompletion parameter. In most cases, you should issue the
PGetRequest call asynchronously so that your application can continue execution
while PGetRequest listens for an incoming call; the PGetRequest function
returns after it receives an incoming request or encounters an error condition. If
you issue this call asynchronously, you must either specify a completion routine or
set the ioCompletion parameter to NIL. If you use a completion routine, before it
exits, your completion routine can call the PGetRequest function again to listen
for the next incoming request. If you do not use a completion routine, you must
poll the ioResult field for indication of an incoming request to determine when
the function completes execution and whether an error condition or an incoming
request caused the function to complete. For more information on calling a routine
asynchronously, see the chapter “Introduction to AppleTalk” in this book.

3. Process the values that PGetRequest returns. The PGetRequest function returns
the following values that may be of use to your application:
n The request transaction ID reqTID that ATP assigns to this request. If you intend

to respond to the request, save this value because you will need to pass it to the
PSendResponse function and the PAddResponse function to identify the request
for which the response message is intended. For more information on the trans-
action ID, see the discussion in the section “The ATP Packet Format” beginning on
page 6-5.

n The userData parameter, which contains any additional information that the
requester application has sent. To make this parameter meaningful, both the
requester and the responder applications should agree on the use of these
additional data bytes that are separate from the request or response data sent
in an ATP transaction.

n The exactly-once bit (bit 5) of the atpFlags parameter, which is set if the request
received is part of an exactly-once transaction. ATP uses this information internally
to ensure that your responder application receives this request only once.

Listing 6-2 on page 6-17 shows how to open a socket and issue a call to the PGetRequest
function to receive requests.
Using ATP 6-15

P
)

C H A P T E R 6

AppleTalk Transaction Protocol (ATP)

Responding to Requests 6

After you process a request and create a response message, you call the PSendResponse
function to send the response. ATP assembles the response packets into a message and
returns them to the requester application. You can send the request through the same
socket that you use to receive incoming requests, or you can specify a different socket to
be used for this purpose. To use a different socket, you must first open the socket by
calling POpenATPSocket. The code in Listing 6-2 opens a new socket that it uses to
send the response.

1. Create a buffer data structure to hold the response data that you want to send.
The buffer data structure (BDS) must be an array of up to eight elements. You can use
the BuildBDS function to create the BDS. You pass BuildBDS a pointer to a buffer
and the length of the buffer, and it creates up to eight elements depending on the size
of the buffer that you supply. BuildBDS returns as its function result the number of
elements that it creates; you pass this number and a pointer to the buffer data
structure to the PSendResponse call. The memory that you allocate for the buffer
must be nonrelocatable until the PSendResponse call completes execution. After
PSendResponse returns, you should release this memory.

2. To send the response, call the PSendResponse function. The response data cannot
exceed 4624 bytes. If you need to send more information, you can follow the
PSendResponse function with one or more calls to the PAddResponse function
until you have sent a total of eight packets, including the packets that you sent
when you called the PSendResponse function; each time you call the PAddResponse
function, you can send one additional packet consisting of 578 bytes of data.
n For the input address block (addrBlock) and transaction ID (transID)

parameters to PSendResponse, use the address block (addrBlock) and
request transaction ID (reqTID) parameter values that the PGetRequest
function returned.

n Set the numOfBuffs field to the number of response packets that you are sending.
If you are sending fewer packets than the requester expects to receive, you must set
the end-of-message (atpEOMvalue) bit (bit 4) in the atpFlags field to indicate
that the last packet is the final one in the response message. The bitmap returned
by the PGetRequest function indicates the number of packets that the requester
expects in response.

n Set the atpSocket field to the number of the socket that you are using to send
the response.

3. Call the CloseATPSkt function to close the socket that you opened to receive
requests and respond to them after you are finished with this socket. You can use
the socket to continue to listen for requests until your application completes
execution, but you should explicitly close the socket before exiting the program.

The code in Listing 6-2 first shows how to open a socket and issue a call to the
PGetRequest function to receive requests. Then it shows how to prepare the
response data and send it.
6-16 Using ATP

C H A P T E R 6

AppleTalk Transaction Protocol (ATP)

6
A

ppleTalk Transaction P
rotocol (AT
Listing 6-2 Opening a socket to receive a request and sending response data

CONST

kMaxPacketSize = 578; {maximum packet size you can receive}

kMaxResponses = 8; {maximum number of responses to expect}

kRespBufSize = kMaxPacketSize * kMaxResponses;

{your response buffer}

VAR

err: OSErr;

NumOfBufs: Integer;

ref: Integer;

nBufs: Integer;

ReqBitMap: BitMapType;

thisBit: LongInt;

gAtpPBPtr: ATPPBPtr;

gSendRespPBPtr: ATPPBPtr;

gGetReqBufPtr: Ptr;

gSRespBuf: Ptr;

gSRespBdsPtr: BDSPtr;

BEGIN

gAtpPBPtr := ATPPBPtr(NewPtr(SizeOf(ATPParamBlock)));

gSendRespPBPtr := ATPPBPtr(NewPtr(SizeOf(ATPParamBlock)));

gGetReqBufPtr := NewPtr(kMaxPacketSize);

gSRespBdsPtr := BDSPtr(NewPtr(SizeOf(BDSType)));

gSRespBuf := NewPtr(kRespBufSize);

err := OpenDriver('MPP',ref);

if err <> noErr THEN DoErr(err);

WITH gAtpPBPtr^ DO

BEGIN

atpSocket := 0; {dynamically allocate a socket}

addrBlock.aNet := 0; {accept requests from anyone}

addrBlock.aNode := 0;

addrBlock.aSocket := 0;

END;

err := POpenATPSkt(gAtpPBPtr,false);{socket is returned in }

{ gAtpPBPtr^.atpSocket}

IF err <> noErr THEN DoErr(err);

IF gAtpPBPtr^.ioResult <> noErr THEN DoErr(err);
Using ATP 6-17

P
)

C H A P T E R 6

AppleTalk Transaction Protocol (ATP)
WITH gAtpPBPtr^ DO

BEGIN

reqLength := 0; {request data length will be returned }

{ to you here}

reqPointer := gGetReqBufPtr; {pointer to buffer for incoming request }

{ data}

END;

err := PGetRequest(gAtpPBPtr,TRUE);{asynchronous PGetRequest}

IF err <> noErr THEN DoErr(err);

{Poll ioResult until the call completes.}

WHILE gAtpPBPtr^.ioResult > noErr DO

BEGIN

GoDoSomething; {return control to user while you wait }

{ for PGetRequest to complete}

END;

IF gAtpPBPtr^.ioResult <> noErr THEN DoErr(err);

MyProcessRequestReceived(gAtpPBPtr^.reqPointer,gAtpPBPtr^.reqLength)

{user routine that looks at the request }

{ data received}

{Walk through the bitmap and see how many response buffers you need.}

NumOfBufs := 0;

FOR thisBit := 0 to 7 DO

BEGIN

{Each bit that is set corresponds to a buffer.}

if BitTst(@gAtpPBPtr^.bitMap,thisBit) = TRUE THEN

BEGIN

{Your routine to fill in the appropriate response data.}

SetUpResponseData(gSRespBuf,thisBit);

NumOfBufs := NumOfBufs + 1;

END

END;

{Put your response data into the BDS structure.}

nBufs := BuildBDS(gSRespBuf,Ptr(gSRespBdsPtr),(NumOfBufs * kMaxPacketSize));
6-18 Using ATP

C H A P T E R 6

AppleTalk Transaction Protocol (ATP)

6
A

ppleTalk Transaction P
rotocol (AT
WITH gSendRespPBPtr^ DO

BEGIN

atpSocket := gAtpPBPtr^.atpSocket;

atpFlags := atpEOMvalue; {indicate end of message}

{Send response to the machine that sent you the request.}

addrBlock.aNet := gAtpPBPtr^.addrBlock.aNet;

addrBlock.aNode := gAtpPBPtr^.addrBlock.aNode;

addrBlock.aSocket := gAtpPBPtr^.addrBlock.aSocket;

bdsPointer := Ptr(gSRespBdsPtr);

numOfBuffs := NumOfBufs; {send all of the responses back now}

bdsSize := nBufs; {indicate how many responses you are }

{ sending}

transID := gAtpPBPtr^.transID; {use transID returned from the }

{ PGetRequest function}

END;

err := PSendResponse(gSendRespPBPtr,FALSE);

IF err <> noErr THEN DoErr(err);

{Clean up after you are done.}

DisposePtr(Ptr(gAtpPBPtr));

DisposePtr(Ptr(gSendRespPBPtr));

DisposePtr(gGetReqBufPtr);

DisposePtr(Ptr(gSRespBdsPtr));

DisposePtr(gSRespBuf);

END.

Canceling an ATP Function 6
You can cancel all pending ATP function calls made on a specific socket by closing the
socket. However, ATP provides functions that allow you to cancel individual function
calls or all function calls of a particular kind. If you want to close a socket for which there
are still pending requests that you don’t want executed, you should first explicitly cancel
those requests by using the ATP function provided for this purpose, instead of simply
closing the socket.

You can use the following functions to cancel specific requests:

■ To cancel a PGetRequest function, use the PKillGetReq function, which is
described on page 6-41. You identify the request to be canceled by specifying
the pointer to the parameter block that you passed to the PGetRequest function
when you called it.
Using ATP 6-19

P
)

C H A P T E R 6

AppleTalk Transaction Protocol (ATP)
■ To cancel all pending PGetRequest functions on a certain socket, use the
ATPKillAllGetReq function described on page 6-42; you specify the socket number,
whose pending get requests you want to cancel, as the value of the atpSocket
parameter.

■ To cancel a PSendRequest or a PNSendRequest function, use the PKillSendReq
function described beginning on page 6-38. You identify the request to be canceled
by specifying the pointer to the parameter block that you passed to the function
when you issued it. To cancel a PSendRequest function, use the PRelTCB function
described beginning on page 6-40. You identify the request to be canceled by
specifying the request transaction ID as the transID parameter and the destination
socket of the request as the addrBlock parameter.

■ To cancel an exactly-once PSendResponse function, use the PRelRspCB function,
described beginning on page 6-43. You identify the request to be canceled by
specifying the transaction ID of the associated request as the transID parameter and
the PSendResponse destination socket number as the atpSocket parameter.

ATP Reference 6

This section describes the data structures and routines that are specific to ATP.

■ The “Data Structures” section shows the Pascal data structures for the buffer data
structure (BDS) array, the ATP parameter block, and the address block record.

■ The “Routines” section describes the ATP routines for making a transaction request,
receiving and responding to a transaction request, canceling a call to an ATP function,
and building a buffer data structure to be used to hold response data to be sent
and received.

Data Structures 6
This section describes the data structures that are specific to ATP. These data structures
include the buffer data structure that is used to hold the response data packets to be sent
from one application and received by another, the ATP parameter block that is used to
hold input and output values for ATP functions, and the address block record data
structure that ATP functions use to specify an AppleTalk internet socket address.

The Buffer Data Structure 6

The buffer data structure (BDS) is an array of type BDSElement containing up to eight
records, each of which is used to hold a response packet. You create a BDS to hold
the response data that you send using the PSendResponse function. You also create
a BDS to receive the response packets that you request through a PSendRequest or
PNSendRequest function. You can use the BuildBDS function to create this data
structure, or you can create the data structure in Pascal.
6-20 ATP Reference

C H A P T E R 6

AppleTalk Transaction Protocol (ATP)

6
A

ppleTalk Transaction P
rotocol (AT
TYPE BDSElement =

RECORD

buffSize: Integer;

buffPtr: Ptr;

dataSize: Integer;

userBytes: Longint;

END;

BDSType = ARRAY[0..7] OF BDSElement;

BDSPtr = ^BDSType;

BitMapType = PACKED ARRAY[0..7] OF Boolean;

Field descriptions

buffSize The size in bytes of the buffer.
buffPtr A pointer to the buffer.
dataSize The size of the data received.
userBytes Up to 4 bytes of additional data separate from the response data.

The ATP Parameter Block 6

The ATP functions require a pointer to an ATP parameter block that is used to pass the
input and output parameters associated with the function. The ATPParamBlock data
type defines the ATP parameter block. The ATP parameter block includes variant records
for the fields that are particular to an ATP routine.

This section defines the fields that are common to all ATP functions that use the ATP
parameter block. (The BuildBDS function does not use the ATP parameter block.) These
common fields are either filled in by the MPW interface or returned by the function; your
application does not need to provide values for these fields. This section does not define
reserved fields, which are used internally by the .ATP driver or not at all. The fields that
are used for specific functions only are defined in the descriptions of the functions to
which they apply.

TYPE ATPParamBlock =

PACKED RECORD

qLink: QElemPtr; {reserved}

qType: Integer; {reserved}

ioTrap: Integer; {reserved}

ioCmdAddr: Ptr; {reserved}

ioCompletion: ProcPtr; {completion routine}

ioResult: OSErr; {result code}

userData: Longint; {ATP user bytes}

reqTID: Integer; {request transaction ID}

ioRefNum: Integer; {driver reference number}

csCode: Integer; {call command code}

atpSocket: Byte; {currBitMap or socket number}
ATP Reference 6-21

P
)

C H A P T E R 6

AppleTalk Transaction Protocol (ATP)
CASE MPPParmType OF

SendRequestParm,

SendResponseParm,

GetRequestParm,

AddResponseParm,

KillSendReqParm:

(atpFlags: Byte; {control information}

addrBlock: AddrBlock;

{source/dest. socket address}

reqLength: Integer; {request/response length}

reqPointer: Ptr; {ptr to request/response data}

bdsPointer: Ptr; {ptr to response BDS}

CASE MPPParmType OF

SendRequestParm:

(numOfBuffs: Byte; {number of responses expected}

timeOutVal: Byte; {timeout interval}

numOfResps: Byte; {number of responses }

{ actually received}

retryCount: Byte; {number of retries}

intBuff: Integer; {used internally for }

{ PNSendRequest}

TRelTime: Byte); {TRelease time for extended }

{ send request}

SendResponseParm:

(filler0: Byte; {bitmap}

bdsSize: Byte; {number of BDS elements}

transID: Integer);{transaction ID}

GetRequestParm:

(bitmap: Byte; {bitmap}

filler1: Byte); {reserved}

AddResponseParm:

(rspNum: Byte; {sequence number}

filler2: Byte); {reserved}

KillSendReqParm

(aKillQEl: Ptr)); {ptr to (queue element) function to }

{ cancel}

END;

ATPPBPtr = ^ATPParamBlock;

Field descriptions

ioCompletion A pointer to a completion routine that you can provide. When you
execute a function asynchronously, the .ATP driver calls your
completion routine when it completes execution of the function if
6-22 ATP Reference

C H A P T E R 6

AppleTalk Transaction Protocol (ATP)

6
A

ppleTalk Transaction P
rotocol (AT
you specify a pointer to the routine as the value of this field. Specify
NIL for this field if you do not wish to provide a completion routine.
If you execute a function synchronously, the .ATP driver ignores the
ioCompletion field. For information about completion routines,
see the chapter “Introduction to AppleTalk” in this book.

ioResult The result of the function. If you call the function asynchronously,
the .ATP driver sets this field to 1 as soon as you call the function,
and it changes the field to the actual result code when the function
completes execution.

ioRefNum The .ATP driver reference number. The MPW interface fills in
this field.

csCode The command code for the ATP function to be executed. The MPW
interface fills in this value for you.

The Address Block Record 6

The address block record defines a data structure of AddrBlock type. The following
ATP functions use this data type to specify AppleTalk internet socket addresses:
PSendRequest, PSendResponse, PNSendResponse, POpenATPSkt, PGetRequest,
PSendResponse, PAddResponse, PRelTCB, PRelRspCB.

TYPE AddrBlock =

PACKED RECORD

aNet: Integer; {network number}

aNode: Byte; {node ID}

aSocket: Byte; {socket number}

END;

Field descriptions

aNet The network number to which the node belongs that is running the
ATP client application whose address you are specifying.

aNode The node ID of the machine running the ATP client application
whose address you are specifying.

aSocket The number of the socket used for the ATP client application.

Routines 6
This section describes the ATP routines that you use to

■ send a request to a responder socket client

■ open and close an ATP socket

■ set up a socket to listen for a request

■ send a response to a requester socket client

■ cancel a response or a request function

■ build a buffer data structure to store the response data
ATP Reference 6-23

P
)

C H A P T E R 6

AppleTalk Transaction Protocol (ATP)
All of the ATP functions except the BuildBDS function use the ATP parameter block to
pass input and output parameters. Each function description shows the parameter block
for that function. An arrow preceding a parameter indicates whether the parameter is an
input parameter, an output parameter, or both:

Sending an ATP Request 6

This section describes the PSendRequest function that you use to send a request to
another socket’s client application, allowing ATP to dynamically allocate the socket to be
used to send the request; in this case, ATP opens the socket when you issue the function
and closes it after the call completes execution. It also describes the PNSendRequest
function that you can use to send a request to another socket while specifying the socket
to be used to send the request; you must open the socket to be used and close it when
you’re finished with it.

PSendRequest 6

The PSendRequest function sends a request to another socket whose client application
is to respond to the request. PSendRequest then waits for a response before completing
execution.

FUNCTION PSendRequest (thePBPtr: ATPPBPt; async: Boolean): OSErr;

thePBPtr A pointer to an ATP parameter block.

async A Boolean that indicates whether the function should be executed
asynchronously or synchronously. Specify TRUE for asynchronous
execution.

Parameter block

Arrow Meaning

→ Input

← Output

↔ Both

→ iocompletion ProcPtr A pointer to a completion routine.
← ioResult OSErr The function result.
→ userData LongInt Four bytes of user data.
← reqTID Integer The transaction ID for this request.
→ csCode Integer Always sendRequest for this function.
← currBitMap Byte A bitmap.
↔ atpFlags Byte The control information.
→ addrBlock AddrBlock The destination socket address.
→ reqLength Integer The size in bytes of the request.
6-24 ATP Reference

C H A P T E R 6

AppleTalk Transaction Protocol (ATP)

6
A

ppleTalk Transaction P
rotocol (AT
Field descriptions

userData Four bytes of user data that are sent in the header of the message.
You can use these bytes for any purpose that you wish.

reqTID A number that identifies this transaction request. If you want to use
the PRelTCB function to cancel the transaction, you must pass it
this number.

currBitMap A bitmap showing which packets of the transaction were received.
atpFlags A control information field whose bits, numbered 0–7, are used

as flags.
You set bit 5 (atpXOvalue) to specify an exactly-once transaction.
To specify an at-least-once transaction, you clear the bit.
To set the other connection end’s release timer, set bit 2 of this flag,
and use the TRelTime field to indicate the amount of time. Bit 2
(atpXcallvalue) indicates that the parameter block is extended to
include the release timer field.
ATP sets the atpTIDValidvalue bit (bit 1) of this field to indicate
that the transaction ID field (reqTID) now contains valid data; you
should determine if this bit is set before you check the request
transaction ID.
To direct ATP to use DDP’s checksum feature, set the send
checksum (atpSendChkvalue) bit (bit 0) of this flag.

addrBlock The AppleTalk internet address of the socket to which the request is
to be sent.

reqLength The size of the request to be sent.
reqPointer A pointer to the request data to be sent.
bdsPointer A pointer to a buffer data structure (BDS) that is to be used to hold

the responses.
numOfBuffs On input, the number of response packets that you expect from the

responder application. If this field contains a nonzero number on
return, you can examine the currBitMap field to determine which
packets of the transaction were actually received.

timeOutVal The number of seconds that ATP should wait for a response before
resending the request.

numOfResps The number of responses actually received.
retryCount The maximum number of times ATP should retry to send the

request. This field is used to monitor the number of retries; for
each retry, ATP decrements it by 1.

→ reqPointer Ptr A pointer to request data.
→ bdsPointer Ptr A pointer to response data.
→ numOfBuffs Byte The number of responses expected.
→ timeOutVal Byte The timeout interval.
← numOfResps Byte The number of responses received.
↔ retryCount Byte The number of retries.
→ TRelTime Byte The release timer setting.
ATP Reference 6-25

P
)

C H A P T E R 6

AppleTalk Transaction Protocol (ATP)
TRelTime The release timer setting. Set the 3 lower bits of this field value to
indicate the time to which the release timer should be set for the
other end of the connection:

DESCRIPTION

The PSendRequest function sends your request data to the destination ATP socket that
you specify, and then it waits for that socket’s client to return a response message. ATP
dynamically assigns and opens the socket to be used to send the request, and it closes
the socket when the function completes execution. Before you call the PSendRequest
function, you must build a buffer data structure to hold the response data. You can use
the BuildBDS function to do this. See “The Buffer Data Structure” on page 6-8 and
“BuildBDS” on page 6-44 for a discussion of this function.

If you want to include additional information along with the request message, you can
use the user bytes to include it; for example, you can use these bytes for command
information.

The PSendRequest function completes execution when it receives an entire response or
when the retry count is exceeded. The timeout value (timeOutVal) determines how
many seconds PSendRequest waits before resending the original request packet. The
retry count (retryCount) value determines the maximum number of times that ATP is
to resend the request. Together the timeout value and the retry count determine the total
retry time in seconds (timeOutVal x retryCount = total retry time). ATP modifies the
retry count field value during execution of the PSendRequest function if it resends the
request; ATP decrements the field by 1 for each retry. See “Writing a Requester ATP
Application” beginning on page 6-9 for information on how to select these values.

The .ATP driver maintains a timer, called the release timer, for each call to the
PSendResponse function that is part of an exactly-once (XO) transaction. If the timer
expires before the transaction is complete (that is, before the socket receives the
transaction release packet), the driver completes the PSendResponse function. Before
AppleTalk Phase 2, the release timer was always set to 30 seconds. You can set the
responding socket’s release timer to a value other than 30 seconds. To do this, set
the extended call bit (bit 2) of the atpFlags field in the parameter block for the
PSendRequest function and specify the release timer parameter as the value of the

TRelTime
Setting of
release timer

000 30 seconds

001 1 minute

010 4 minutes

100 8 minutes
6-26 ATP Reference

C H A P T E R 6

AppleTalk Transaction Protocol (ATP)

6
A

ppleTalk Transaction P
rotocol (AT
TRelTime field. The nodes at both ends of the ATP connection must be running
AppleTalk Phase 2 drivers for this feature to work. For a discussion of exactly-once
transactions and use of the release timer, see “At-Least-Once and Exactly-Once
Transactions” on page 6-7. You should set the exactly-once flag (bit 5) if you want the
request to be part of an exactly-once transaction.

You can use the PKillSendReq function or the PRelTCB function to cancel a
PSendRequest call. For the PRelTCB function, you need the request transaction ID that
ATP returns in the request transaction ID (reqTID) field of the PSendRequest call’s
parameter block. You can examine the request transaction ID field before the completion
of the call, but its contents are valid only after the tidValid bit (bit 1) of the atpFlags
field has been set. You should determine if this bit is set before you check the request
transaction ID.

ASSEMBLY-LANGUAGE INFORMATION

To execute the PSendRequest function from assembly language, call the _Control
trap macro with a value of sendRequest in the csCode field of the parameter block. To
execute this function from assembly language, you must also specify the .ATP driver
reference number.

RESULT CODES

PNSendRequest 6

The PNSendRequest function sends a request to another socket’s client. It uses the
socket that you specify to send the request.

FUNCTION PNSendRequest (thePBPtr: ATPPBPtr; async: Boolean): OSErr;

thePBPtr A pointer to an ATP parameter block.

async A Boolean that indicates whether the function should be executed
asynchronously or synchronously. Specify TRUE for asynchronous
execution.

noErr 0 No error
reqFailed –1096 Retry count exceeded
tooManyReqs –1097 Too many concurrent requests
noDataArea –1104 Too many outstanding ATP calls
reqAborted –1105 Request canceled
ATP Reference 6-27

P
)

C H A P T E R 6

AppleTalk Transaction Protocol (ATP)
Parameter block

Field descriptions

userData Four bytes of user data that are sent in the header of the message.
You can use these bytes for any purpose that you wish.

reqTID A number that identifies this transaction request.
atpSocket The socket to be used to send the request. You must have previously

opened this socket by calling the POpenATPSkt function.
atpFlags A control information field whose bits, numbered 0–7, are used

as flags.
You set bit 5 (atpXOvalue) to specify an exactly-once transaction.
To specify an at-least-once transaction, you clear the bit.
To set the other connection end’s release timer, set bit 2 of this flag
(atpXcallvalue) to signal that this is an extended call and that
the parameter block includes an additional field. Then you use the
TRelTime field to indicate the amount of time.
ATP sets the atpTIDidValidvalue bit (bit 1) of this field to
indicate that the transaction ID field (reqTID) now contains
valid data; you should determine if this bit is set before you
check the request transaction ID.
To direct ATP to use DDP’s checksum feature, set the
atpSendChkvalue bit (bit 0) of this flag.

addrBlock The AppleTalk internet socket address of the application to which
the request is being sent.

reqLength The size in bytes of the request data to be sent.
reqPointer A pointer to the request data to be sent.
bdsPointer A pointer to the buffer data structure (BDS) that is to hold the data

returned in response to the request.
numOfBuffs The number of response packets requested and expected from the

responder application.

→ iocompletion ProcPtr A pointer to a completion routine.
← ioResult OSErr The function result.
→ userData LongInt Four bytes of user data.
← reqTID Integer The transaction ID for this request.
→ csCode Integer Always nSendRequest for this function.
→ atpSocket Byte The socket number to send the request.
↔ atpFlags Byte The control information.
→ addrBlock AddrBlock The destination socket address.
→ reqLength Integer The size in bytes of the request.
→ reqPointer Ptr A pointer to the request data.
→ bdsPointer Pointer A pointer to the BDS.
→ numOfBuffs Byte The number of responses expected.
→ timeOutVal Byte The timeout interval.
← numOfResps Byte The number of responses received.
↔ retryCount Byte The number of retries.
← intBuff Integer A buffer that ATP uses internally.
→ TRelTime Byte The release timer setting.
6-28 ATP Reference

C H A P T E R 6

AppleTalk Transaction Protocol (ATP)

6
A

ppleTalk Transaction P
rotocol (AT
timeOutVal The number of seconds that ATP should wait for a response before
resending the request.

numOfResps The number of response packets actually received.
retryCount The maximum number of times ATP should retry to send the

request. This field value is used to monitor the number of retries;
for each retry, ATP decrements the value by 1.

intBuff Two bytes that are used internally by ATP.
TRelTime The release timer setting. The 3 lower bits of this field value indicate

the time to which the release timer is to be set, as follows:

DESCRIPTION

The PNSendRequest function is similar to the PSendRequest function except that
rather than relying on ATP to dynamically allocate a socket to use for the transaction,
PNSendRequest lets you specify the socket to be used to send the request. You set the
atpSocket field of the parameter block to the number of the socket to be used for the
request; you must have previously opened the socket by calling the POpenATPSkt
function. POpenATPSkt lets you send more than one asynchronous request using the
same socket. The number of concurrent requests that you send using PNSendRequest
is machine dependent. If you exceed this limit, ATP returns an error message
(tooManyReqs) indicating this. Note that if you call the PNSendRequest function
without having previously opened the socket that you specify for the send request, ATP
returns a bad ATP socket (badATPSkt) error.

The .ATP driver maintains a timer, called the release timer, for each call to the
PSendResponse function that is part of an exactly-once (XO) transaction. If the timer
expires before the transaction is complete (that is, before the socket receives the
transaction release packet), the driver completes the PSendResponse function. Before
AppleTalk Phase 2, the release timer was always set to 30 seconds. To set the other
connection end’s release timer to another value, set bit 2 of the atpFlags field in the
parameter block for the PNSendRequest function to indicate that this is an extended
call, then set the TRelTime field to the new value. The nodes at both ends of the ATP
connection must be running AppleTalk Phase 2 drivers for this feature to work. For a
discussion of exactly-once transactions and use of the release timer, see “At-Least-Once
and Exactly-Once Transactions” on page 6-7. You should set the exactly-once flag if
you want the request to be part of an exactly-once transaction.

You can use the PKillSendReq function to cancel a pending PNSendRequest call.
Unlike PSendRequest, you cannot use the PRelTCB function to kill this request call.

TRelTime
Setting of
release timer

000 30 seconds

001 1 minute

010 4 minutes

100 8 minutes
ATP Reference 6-29

P
)

C H A P T E R 6

AppleTalk Transaction Protocol (ATP)
SPECIAL CONSIDERATIONS

The parameter block for the PNSendRequest function requires 2 additional bytes,
intBuff, for ATP’s internal use. You must not modify these bytes.

ASSEMBLY-LANGUAGE INFORMATION

To execute the PNSendRequest function from assembly language, call the _Control
trap macro with a value of nSendRequest in the csCode field of the parameter block.
To execute this function from assembly language, you must also specify the .ATP driver
reference number.

RESULT CODES

Opening and Closing an ATP Socket 6

This section describes the POpenATPSkt function that you use to open a socket for
receiving ATP requests from another socket’s client application. It also describes the
PCloseATPSkt function that you use to close a socket used for receiving requests after
you are finished with that socket. You also use the POpenATPSkt and PCloseATPSkt
functions to open and close a socket that you want to use to send requests through a
specific socket by calling the PNSendRequest function.

POpenATPSkt 6

The POpenATPSkt function opens a socket to be used to receive ATP requests or to be
used to send ATP requests through the PNSendRequest function.

FUNCTION POpenATPSkt (thePBptr: ATPPBPtr; async: Boolean): OSErr;

thePBptr A pointer to an ATP parameter block.

async A Boolean that indicates whether the function should be executed
asynchronously or synchronously. Specify TRUE for asynchronous
execution.

Parameter block

noErr 0 No error
reqFailed –1096 Retry count exceeded
tooManyReqs –1097 Too many concurrent requests
badATPSkt –1099 Specified socket is not opened
noDataArea –1104 Too many outstanding ATP calls
reqAborted –1105 Request canceled

→ ioCompletion ProcPtr A pointer to a completion routine.
← ioResult OSErr The function result.
→ csCode Integer Always openATPSkt for this function.
↔ atpSocket Byte The socket number to be used.
→ addrBlock AddrBlock The socket request specification.
6-30 ATP Reference

C H A P T E R 6

AppleTalk Transaction Protocol (ATP)

6
A

ppleTalk Transaction P
rotocol (AT
Field descriptions

atpSocket The number of the socket that ATP is to open. To direct ATP to
dynamically assign a socket number, which it returns as the value
of this field, specify 0.

addrBlock A value that specifies the AppleTalk internet socket addresses
that the atpSocket field will receive requests from; specify 0 for
the network number, the node ID, or the socket number to accept
all requests based on the value of that part of the AppleTalk internet
socket address.

DESCRIPTION

The POpenATPSkt routine serves two purposes: you use it to open a socket to be used
for incoming requests, and you use it to open a socket to send requests using a specific
socket. (The PNSendRequest function lets you send a request using a specific socket,
but you must first open that socket using POpenATPSkt.) You can use the addrBlock
field to filter requests that you will accept by restricting network addresses.

ASSEMBLY-LANGUAGE INFORMATION

To execute the POpenATPSkt function from assembly language, call the _Control trap
macro with a value of openATPSkt in the csCode field of the parameter block. To
execute this function from assembly language, you must also specify the .ATP driver
reference number.

RESULT CODES

SEE ALSO

The PNSendRequest function is described on page 6-27.

PCloseATPSkt 6

The PCloseATPSkt function closes a socket that was opened to receive ATP requests or
to send requests over a specific socket.

FUNCTION PCloseATPSkt (thePBPtr: ATPPBPtr; async: Boolean): OSErr;

thePBPtr A pointer to an ATP parameter block.

async A Boolean that indicates whether the function should be executed
asynchronously or synchronously. Specify TRUE for asynchronous
execution.

noErr 0 No error
tooManySkts –1098 Too many responding sockets
noDataArea –1104 Too many outstanding ATP calls
ATP Reference 6-31

P
)

C H A P T E R 6

AppleTalk Transaction Protocol (ATP)
Parameter block

Field descriptions

atpSocket The number of the socket to be closed.

DESCRIPTION

The PCloseATPSkt function closes the socket that you opened to receive ATP requests
or to send them over a specific socket.

ASSEMBLY-LANGUAGE INFORMATION

To execute the PCloseATPSkt function from assembly language, call the _Control
trap macro with a value of closeATPSkt in the csCode field of the parameter block.
To execute this function from assembly language, you must also specify the .ATP driver
reference number.

RESULT CODES

Setting Up a Socket to Listen for Requests 6

After you open a socket to be used to response to requests, you need to set up that socket
to receive requests. You use the PGetRequest function for this purpose.

PGetRequest 6

The PGetRequest function sets up a socket to listen for a request from another socket.

FUNCTION PGetRequest (thePBPtr: ATPPBPtr; async: Boolean): OSErr;

thePBPtr A pointer to an ATP parameter block.

async A Boolean that indicates whether the function should be executed
asynchronously or synchronously. Specify TRUE for asynchronous
execution.

→ ioCompletion ProcPtr A pointer to a completion routine.
← ioResult OSErr The function result.
→ csCode Integer Always closeATPSkt for this function.
→ atpSocket Byte The socket number.

noErr 0 No error
noDataArea –1104 Too many outstanding ATP calls
6-32 ATP Reference

C H A P T E R 6

AppleTalk Transaction Protocol (ATP)

6
A

ppleTalk Transaction P
rotocol (AT
Parameter block

Field descriptions

userData The 4 user bytes from the request.
reqTID The transaction ID of the request that PGetRequest has received.

ATP supplies this value.
atpSocket The number of the socket that is to be used to listen for requests.

This is the number of a socket you opened using the POpenATPSkt
function call.

atpFlags A control information field whose bits, numbered 0–7, are used
as flags.
ATP sets bit 5, the exactly-once flag (atpXOvalue), if the request
received is part of an exactly-once transaction.

addrBlock The AppleTalk internet address of the socket from which the
request was sent. ATP returns this value.

reqLength On input, the size in bytes of the buffer to be used to store the
incoming request. On return, the actual number of bytes of the
request received.

reqPointer A pointer to the location of the buffer to be used to store the
incoming request.

bitMap A bitmap of the transaction that ATP returns.

DESCRIPTION

To receive an ATP request, you must set up a socket to listen for incoming requests; you
use the PGetRequest function to do this. In almost all cases, you should call the
PGetRequest function asynchronously to avoid delaying execution of your program
until after an ATP request comes in. The PGetRequest function completes execution
after it receives an ATP request.

The PGetRequest function returns the transaction ID of the request that it receives in the
reqTID field. You should save this value if you intend to respond to the request; this
transaction ID is used as an input parameter to the PSendResponse and PAddResponse
functions. To determine that the request transaction ID specified in the reqTID field is
valid, first check the atpTIDValidvalue bit (bit 1) of the atpFlags field. If this bit is
set, the reqTID field value is valid.

→ ioCompletion ProcPtr A pointer to a completion routine.
← ioResult OSErr The function result.
← userData LongInt Four bytes of user data.
← reqTID Word The transaction ID.
→ csCode Integer Always getRequest for this function.
→ atpSocket Byte The socket number.
← atpFlags Byte The control information.
← addrBlock LongInt The destination socket address.
↔ reqLength Word On input, the request buffer size. On return,

the actual of the request received.
→ reqPointer Ptr A pointer to the request buffer.
← bitMap Byte A bitmap.
ATP Reference 6-33

P
)

C H A P T E R 6

AppleTalk Transaction Protocol (ATP)
You must allocate nonrelocatable memory to be used as the buffer to hold an incoming
request. Make sure that you allocate enough memory to hold the entire request; ATP
will not deliver more data than will fit in the amount of buffer space that you specified
as the value of the reqLength field. The buffer should be 578 bytes long, which is the
maximum size of a request packet, unless you know the exact size of the request.

SPECIAL CONSIDERATIONS

Memory used for the incoming request buffer belongs to ATP for the life of the call.

ASSEMBLY-LANGUAGE INFORMATION

To execute the PGetRequest function from assembly language, call the _Control trap
macro with a value of getRequest in the csCode field of the parameter block. To
execute this function from assembly language, you must also specify the .ATP driver
reference number.

RESULT CODES

SEE ALSO

For information on opening a socket that you can set up to receive requests, use the
POpenATPSkt function, described on page 6-30.

Responding to Requests 6

After you receive and process a request, you can call the PSendResponse function to
send the response data to the requesting socket. If you need to send additional data, you
can call the PAddResponse function after you call PSendResponse. This section
discusses the PSendResponse and PAddResponse functions.

PSendResponse 6

The PSendResponse function sends the response message to the requester.

FUNCTION PSendResponse (thePBPtr: ATPPBPtr; async: Boolean): OSErr;

thePBPtr A pointer to an ATP parameter block.

async A Boolean that indicates whether the function should be executed
asynchronously or synchronously. Specify TRUE for asynchronous
execution.

noErr 0 No error
badATPSkt –1099 Bad responding socket
6-34 ATP Reference

C H A P T E R 6

AppleTalk Transaction Protocol (ATP)

6
A

ppleTalk Transaction P
rotocol (AT
Parameter block

Field descriptions

userData Four bytes of user data that are sent in the header of the message. If
the response was part of an exactly-once transaction, this field
contains the user bytes from the TRel packet.

atpSocket The number of the socket that is sending the response.
atpFlags A control information field whose bits, numbered 0–7, are used

as flags.
To signal that this packet is the last packet in the transaction’s
response message when the number of responses is less than
expected, set the end-of-message (atpEOMvalue) bit (bit 4).
ATP sets the send-transmission-status (atpSTSvalue) bit (bit 3) to
force the requester to retransmit a request immediately, when this
is necessary.
To direct ATP to use DDP’s checksum feature, set the send checksum
(atpSendChkvalue) bit (bit 0) of this flag.

addrBlock The AppleTalk internet socket address of the socket to which the
response is to be sent.

bdsPointer A pointer to the response buffer data structure (BDS) that contains
the response data.

numOfBuffs The number of response packets to be sent.
bdsSize The number of elements in the buffer data structure (BDS).
transID The transaction ID of the request for which this response is meant.

DESCRIPTION

You call PSendResponse when you receive a request, and after you have created a
response message. The PSendResponse function sends the data to the socket whose
address you specify; this is the address of the requester socket. If you cannot or do not
want to send the entire response at one time, you can call PSendResponse to send the
first part of it, then call PAddResponse later to send the remainder of the response.

To signal the requester socket that you are sending fewer response packets than it
expects to receive, you must set the end-of-message flag (bit 4) of the atpFlags
parameter.

→ ioCompletion ProcPtr A pointer to a completion routine.
← ioResult OSErr The function result.
→ userData LongInt Four bytes of user data.
→ csCode Integer Always sendResponse for this function.
→ atpSocket Byte The socket number.
→ atpFlags Byte The control information.
→ addrBlock AddrBlock The destination socket address.
→ bdsPointer Ptr A pointer to the response BDS.
→ numOfBuffs Byte The number of response packets to be sent.
→ bdsSize Byte The BDS size in elements.
→ transID Integer The transaction ID.
ATP Reference 6-35

P
)

C H A P T E R 6

AppleTalk Transaction Protocol (ATP)
For each call to the PSendResponse function that is part of an exactly-once (XO)
transaction, ATP maintains a timer, called the release timer. If the timer expires before
the transaction is completed, that is, before the socket receives the transaction release
packet, ATP completes the PSendResponse function. Before AppleTalk Phase 2, the
release timer was always set to 30 seconds. The PSendRequest or the PNSendRequest
function can set the release timer for the responder to a different value. For more
information about sending a response, see “Responding to Requests” beginning on
page 6-16.

SPECIAL CONSIDERATIONS

During exactly-once transactions, PSendResponse doesn’t complete until either a TRel
packet is received from the socket that made the request or the retry count is exceeded.

ASSEMBLY-LANGUAGE INFORMATION

To execute the PSendResponse function from assembly language, call the _Control
trap macro with a value of sendResponse in the csCode field of the parameter block.
To execute this function from assembly language, you must also specify the .ATP driver
reference number.

RESULT CODES

SEE ALSO

See the chapter “Introduction to AppleTalk” in this book for a description of the
AppleTalk internet socket address structure.

For a description of the possible release timer values that PSendRequest or
PNSendRequest can set, see either the PSendRequest function on page 6-24
or the PNSendRequest function on page 6-27.

PAddResponse 6

The PAddResponse function sends an additional response packet to a socket that
has already been sent the first part of the response message through the
PSendResponse function.

FUNCTION PAddResponse (thePBPtr: ATPPBPtr; async: Boolean): OSErr;

noErr 0 No error
badATPSkt –1099 Bad responding socket
badBuffNum –1100 Sequence number out of range
noRelErr –1101 No release received
noDataArea –1104 Too many outstanding ATP calls
6-36 ATP Reference

C H A P T E R 6

AppleTalk Transaction Protocol (ATP)

6
A

ppleTalk Transaction P
rotocol (AT
thePBPtr A pointer to an ATP parameter block.

async A Boolean that indicates whether the function should be executed
asynchronously or synchronously. Specify TRUE for asynchronous
execution.

Parameter block

Field descriptions

userData Four bytes of user data that are sent in the header of the message.
You can use these bytes for any purpose that you wish.

atpSocket The number of the socket that is used to send the additional
response.

atpFlags A control information field whose bits, numbered 0–7, are used
as flags.
To signal that this packet is the last packet in the transaction’s
response message when the number of responses is less than
expected, set the end-of-message (atpEOMvalue) bit (bit 4).
ATP sets the send-transmission-status (atpSTSvalue) bit (bit 3) to
force the requester to retransmit a request immediately, when this
is necessary.
To direct ATP to use DDP’s checksum feature, set the send
checksum (atpSendChkvalue) bit (bit 0) of this flag.

addrBlock The number of the socket to which the additional response packet is
to be sent.

reqLength The size in bytes of the response data to be sent.
reqPointer A pointer to the response data to be sent.
rspNum The sequence number of the response, in the range of 0 to 7.
reqTID The transaction ID of the request for which this response is meant.

DESCRIPTION

The PAddResponse function sends an additional response packet, following the initial
response sent in return to a PSendResponse request message. You can send multiple
additional response packets, one at a time, up to a total of eight packets including the
initial response packets sent in the PSendResponse function.

→ ioCompletion ProcPtr A pointer to a completion routine.
← ioResult OSErr The function result.
→ userData LongInt Four bytes of user data.
→ csCode Integer Always addResponse for this function.
→ atpSocket Byte The source socket number.
→ atpFlags Byte The control information.
→ addrBlock AddrBlock The destination socket address.
→ reqLength Integer The size in bytes of the response data.
→ reqPointer Ptr A pointer to the response data.
→ rspNum Byte The sequence number.
→ transID Integer The transaction ID.
ATP Reference 6-37

P
)

C H A P T E R 6

AppleTalk Transaction Protocol (ATP)
You cannot issue a PAddResponse call without having first called PSendResponse.
You must provide a pointer to the buffer containing the data to be sent and specify the
amount of data. Each packet can contain up to 578 bytes of data. You also must specify
the sequence number of the response.

SPECIAL CONSIDERATIONS

If the transaction is part of an exactly-once transaction, you must allocate nonrelocatable
memory for the buffer that you use for the response data, and you must not alter the
contents of this buffer until the corresponding PSendRequest function has completed
execution.

ASSEMBLY-LANGUAGE INFORMATION

To execute the PAddResponse function from assembly language, call the _Control
trap macro with a value of addResponse in the csCode field of the parameter block.
To execute this function from assembly language, you must also specify the .ATP driver
reference number.

RESULT CODES

Canceling Pending ATP Functions 6

This section describes the functions that you use to cancel pending ATP functions.
It describes the PKillSendReq function that you use to cancel a PSendRequest
or PNSendRequest function, the PRelTCB function that you use to cancel a
PSendRequest function, the PKillGetReq function that you use to cancel a
PGetRequest function, the ATPKillAllGetReq function that you use to cancel
all pending PGetRequest functions, and the PRelRspCB function that you use to
cancel a PSendResponse call that specifies an exactly-once transaction.

PKillSendReq 6

The PKillSendReq function cancels the pending PSendRequest or PNSendRequest
functions whose queue element pointer you specify.

FUNCTION PKillSendReq (thePBPtr: ATPPBPtr; async: Boolean): OSErr;

noErr 0 No error
badATPSkt –1099 Bad responding socket
badBuffNum –1100 Sequence number out of range
noSendResp –1103 PAddResponse issued before PSendResponse
noDataArea –1104 Too many outstanding ATP calls
6-38 ATP Reference

C H A P T E R 6

AppleTalk Transaction Protocol (ATP)

6
A

ppleTalk Transaction P
rotocol (AT
thePBPtr A pointer to an ATP parameter block.

async A Boolean that indicates whether the function should be executed
asynchronously or synchronously. Specify TRUE for asynchronous
execution.

Parameter block

Field descriptions

aKillQEl A pointer to the queue element of the pending function that is to be
canceled. This is the pointer to the parameter block that you passed
to the send request function when you issued the function.

DESCRIPTION

To cancel a specific pending PSendRequest or PNSendRequest function, you specify
the pointer to the queue element for the function in the aKillQEl field of the parameter
block for the PKillSendReq function, then call the function. If the function has
already completed execution or if it is not in the ATP queue for any other reason,
PKillSendReq returns a message (cbNotFound) indicating that it could not find the
parameter block.

ASSEMBLY-LANGUAGE INFORMATION

To execute the PKillSendReq function from assembly language, call the _Control
trap macro with a value of killSendReq in the csCode field of the parameter block. To
execute this function from assembly language, you must also specify the .ATP driver
reference number.

RESULT CODES

SEE ALSO

To send requests, use the PSendRequest function, described on page 6-24, and the
PNSendRequest function, described on page 6-27.

→ ioCompletion ProcPtr A pointer to the completion routine.
← ioResult OSErr The function result.
→ csCode Integer Always killSendReq for this function.
→ aKillQEl Ptr A pointer to queue element of function

to be removed.

noErr 0 No error
cbNotFound –1102 The aKillQEl parameter does not point to a

PSendRequest or PNSendRequest queue element
ATP Reference 6-39

P
)

C H A P T E R 6

AppleTalk Transaction Protocol (ATP)
PRelTCB 6

The PRelTCB function cancels the pending PSendRequest function that you specify.

FUNCTION PRelTCB (thePBPtr: ATPPBPtr; async: Boolean): OSErr;

thePBPtr A pointer to an ATP parameter block.

async A Boolean that indicates whether the function should be executed
asynchronously or synchronously. Specify TRUE for asynchronous
execution.

Parameter block

Field descriptions

addrBlock The AppleTalk internet address of the destination socket for which
the PSendRequest function that is to be canceled was meant.

transID The transaction ID of the PSendRequest function to be canceled.
You can get the transaction ID from the reqTID field of the
PSendRequest parameter block queue entry.

DESCRIPTION

The PRelTCB function releases the queued parameter block for the PSendRequest
function whose transaction ID you specify. The PRelTCB function returns a function
result of reqAborted for the canceled PSendRequest function.

SPECIAL CONSIDERATIONS

You cannot use this function to cancel a send request that you made using the
PNSendRequest function.

ASSEMBLY-LANGUAGE INFORMATION

To execute the PRelTCB function from assembly language, call the _Control trap
macro with a value of relTCB in the csCode field of the parameter block. To
execute this function from assembly language, you must also specify the .ATP
driver reference number.

RESULT CODES

→ ioCompletion ProcPtr A pointer to a completion routine.
← ioResult OSErr The function result.
→ csCode Integer Always relTCB for this function.
→ addrBlock AddrBlock The destination socket address.
→ transID Integer The transaction ID of the request

to be canceled.

noErr 0 No error
cbNotFound –1102 The ATP control block was not found
noDataArea –1104 Too many outstanding ATP functions
6-40 ATP Reference

C H A P T E R 6

AppleTalk Transaction Protocol (ATP)

6
A

ppleTalk Transaction P
rotocol (AT
PKillGetReq 6

The PKillGetReq function cancels the pending PGetRequest function that
you specify.

FUNCTION PKillGetReq (thePBPtr: ATPPBPtr; async: Boolean): OSErr;

thePBPtr A pointer to an ATP parameter block.

async A Boolean that indicates whether the function should be executed
asynchronously or synchronously. Specify TRUE for asynchronous
execution.

Parameter block

Field descriptions

aKillQEl A pointer to the queue element of the pending call that is to
be canceled.

DESCRIPTION

The PKillGetReq function lets you cancel a specific outstanding PGetRequest
function without having to cancel all pending get requests or having to close the
socket to do this; closing the socket cancels all outstanding functions on that socket.

To cancel a specific pending PGetRequest function, you specify the pointer to the
queue element for the function in the aKillQEl field of the parameter block for the
PKillGetReq function. The queue element pointer is the pointer to the parameter block
of the PGetRequest function to be canceled. If the function has already completed
execution or if it is not in the ATP queue for any other reason, PKillGetReq returns a
message (cbNotFound) indicating that it could not find the parameter block.

ASSEMBLY-LANGUAGE INFORMATION

To execute the PKillGetReq function from assembly language, call the _Control trap
macro with a value of killGetReq in the csCode field of the parameter block.
To execute this function from assembly language, you must also specify the .ATP driver
reference number.

RESULT CODES

→ ioCompletion ProcPtr A pointer to a completion routine.
← ioResult OSErr The function result.
→ csCode Integer Always killGetReq for this function.
→ aKillQEl Pointer A pointer to the queue element

noErr 0 No error
cbNotFound –1102 The aKilllQEl parameter does not point to a

PGetRequest queue element
ATP Reference 6-41

P
)

C H A P T E R 6

AppleTalk Transaction Protocol (ATP)
ATPKillAllGetReq 6

The ATPKillAllGetReq function cancels all pending calls to the PGetRequest
function for a specific socket.

FUNCTION ATPKillAllGetReq (thePBPtr: ATPPBPtr;

async: Boolean): OSErr;

thePBPtr A pointer to an ATP parameter block.

async A Boolean that indicates whether the function should be executed
asynchronously or synchronously. Specify TRUE for asynchronous
execution.

Parameter block

Field descriptions

atpSocket The socket whose pending PGetRequest functions are to
be canceled.

DESCRIPTION

The ATPKillAllGetReq function cancels all pending PGetRequest functions issued
on a specific socket without closing the socket. For each function executed asynchro-
nously, ATPKillAllGetReq also calls the completion routine with the value
reqAborted (–1105) in the D0 register. You should call the ATPKillAllGetReq
function before closing a socket.

ASSEMBLY-LANGUAGE INFORMATION

To execute the ATPKillAllGetReq function from assembly language, call the
_Control trap macro with a value of killAllGetReq in the csCode field of the
parameter block. To execute this function from assembly language, you must also
specify the .ATP driver reference number.

RESULT CODES

→ ioCompletion ProcPtr A pointer to the completion routine.
← ioResult OSErr The function result.
→ csCode Integer Always killAllGetReq for this function.
→ atpSocket Byte The socket number whose pending

PGetRequest functions are to be canceled.

noErr 0 No error
cbNotFound –1102 Control block not found; no pending asynchronous calls
6-42 ATP Reference

C H A P T E R 6

AppleTalk Transaction Protocol (ATP)

6
A

ppleTalk Transaction P
rotocol (AT
PRelRspCB 6

The PRelRspCB function cancels a PSendResponse function that is an exactly-once
transaction.

FUNCTION PRelRspCB (thePBPtr: ATPPBPtr; async: Boolean): OSErr;

thePBPtr A pointer to an ATP parameter block.

async A Boolean that indicates whether the function should be executed
asynchronously or synchronously. Specify TRUE for asynchronous
execution.

Parameter block

Field descriptions

atpSocket The number of the socket on which the request was received and
from which the PSendResponse function that is to be canceled
was sent.

addrBlock The internet socket address of the application that issued
the request.

transID The transaction ID of the PSendResponse call to be canceled.
You can get the transaction ID from the reqTID field of the
PSendResponse parameter block queue entry.

DESCRIPTION

The PRelRspCB function releases the queued parameter block for the exactly-once
transaction PSendResponse function without waiting for the release timer to expire
or for a TRel packet to be received; PRelRspCB returns a function result of noErr
for the canceled PSendResponse call.

If you call PRelRspCB to cancel a transaction that is not an exactly-once service,
RelRspCB returns a function result of cbNotFound for the PSendResponse call.

→ ioCompletion ProcPtr A pointer to the completion routine.
← ioResult OSErr The function result.
→ csCode Integer Always relRspCB for this function.
→ atpSocket Byte The number of the socket on which the

request was received.
→ addrBlock AddrBlock The internet socket address of the source

of the request.
→ transID Byte The transaction ID of the request with

which the PSendResponse function to
be canceled is associated.
ATP Reference 6-43

P
)

C H A P T E R 6

AppleTalk Transaction Protocol (ATP)
ASSEMBLY-LANGUAGE INFORMATION

To execute the PRelRspCB function from assembly language, call the _Control trap
macro with a value of relRspCB in the csCode field of the parameter block. To
execute this function from assembly language, you must also specify the .ATP driver
reference number.

RESULT CODES

Building a Buffer Data Structure 6

You need to provide a buffer data structure (BDS) to hold data that comprises multiple
response packets whether you are sending the response data or receiving it. This section
describes a utility, BuildBDS, that ATP provides that allows you to create a BDS to be
used for this purpose.

BuildBDS 6

From the buffer that you supply, the BuildBDS function creates a buffer data structure
(BDS) to be used to hold data for ATP functions that send and receive response data.

FUNCTION BuildBDS (buffPtr: Ptr; bdsPtr: Ptr;

buffSize: Integer): Integer;

buffPtr A pointer to a data buffer.

buffSize The length in bytes of the buffer data structure.

DESCRIPTION

The PSendResponse, PSendRequest, and PNSendRequest functions require a buffer
data structure of a specific format to be used to hold the response data. You can use the
BuildBDS function to create this data structure, or you can build it yourself from Pascal.

The BuildBDS function creates a buffer data structure consisting of an array of
elements—one for each response packet—to be used to hold response data. You pass
this function a pointer to the memory to be used for this buffer and the size in bytes
of the memory. You should allocate enough memory to hold the response data that
you are either sending or receiving. Because an entire response message cannot exceed
4624 bytes, the amount of memory that you allocate for this data structure should not
exceed this size.

noErr 0 No error
cbNotFound –1102 Control block not found; no pending asynchronous calls
6-44 ATP Reference

C H A P T E R 6

AppleTalk Transaction Protocol (ATP)

6
A

ppleTalk Transaction P
rotocol (AT
BuildBDS creates up to eight elements for a buffer data structure. If you provide the
maximum space of 4624 bytes, BuildBDS returns eight elements; if the response
message is shorter and you specify fewer bytes, BuildBDS returns the equivalent
number of elements. BuildBDS returns as a function result the number of buffer data
structure elements that it creates. For more information about the BDS data structure,
see “The Buffer Data Structure” on page 6-20.

RESULT CODES

SEE ALSO

See “PSendResponse” on page 6-34, “PSendRequest” on page 6-24, and
“PNSendRequest” on page 6-27 for more information about the functions that
require a buffer data structure.

noErr 0 No error
paramErr –50 Version number is too high
ATP Reference 6-45

P
)

C H A P T E R 6

AppleTalk Transaction Protocol (ATP)
Summary of ATP 6

Pascal Summary 6

Constants 6

CONST

{csCodes}

nSendRequest = 248; {send request using a specific socket}

relRspCB = 249; {release RspCB}

closeATPSkt = 250; {close ATP socket}

addResponse = 251; {add response}

sendResponse = 252; {send response}

getRequest = 253; {get request}

openATPSkt = 254; {open ATP socket}

sendRequest = 255; {send request}

relTCB = 256; {release TCB}

killGetReq = 257; {kill getRequest}

killSendReq = 258; {kill sendRequest}

killAllGetReq = 259; {kill all getRequests for a socket}

{ATP flags}

atpXOvalue = 32; {ATP exactly-once bit}

atpEOMvalue = 16; {ATP end-of-message bit}

atpSTSvalue = 8; {ATP send-transmission-status bit}

atpTIDValidvalue = 2; {ATP trans. ID valid bit}

atpSendChkvalue = 1; {ATP send checksum bit}

Data Types 6

The Buffer Data Structure

TYPE BDSElement =

RECORD

buffSize: Integer;

buffPtr: Ptr;

dataSize: Integer;

userBytes: LongInt;

END;
6-46 Summary of ATP

C H A P T E R 6

AppleTalk Transaction Protocol (ATP)

6
A

ppleTalk Transaction P
rotocol (AT
BDSType = ARRAY[0..7] OF BDSElement;

BDSPtr = ^BDSType;

BitMapType = PACKED ARRAY[0..7] OF Boolean;

The Address Block Record

TYPE AddrBlock =

PACKED RECORD

aNet: Integer; {network number}

aNode: Byte; {node ID}

aSocket: Byte; {socket number}

END;

The ATP Parameter Block

TYPE ATPParamBlock =

PACKED RECORD

qLink: QElemPtr; {next queue entry}

qType: Integer; {queue type}

ioTrap: Integer; {routine trap}

ioCmdAddr: Ptr; {routine address}

ioCompletion: ProcPtr; {completion routine}

ioResult: OSErr; {result code}

userData: Longint; {ATP user bytes}

reqTID: Integer; {request transaction ID}

ioRefNum: Integer; {driver reference number}

csCode: Integer; {call command code }

{ automatically set}

atpSocket: Byte; {currBitMap or socket number}

CASE MPPParmType OF

SendRequestParm,

SendResponseParm,

GetRequestParm,

AddResponseParm,

KillSendReqParm:

(atpFlags: Byte; {control information}

addrBlock: AddrBlock;

{source/dest. socket address}

reqLength: Integer; {request/response length}

reqPointer: Ptr; {ptr to request/response data}

bdsPointer: Ptr; {ptr to response BDS}

CASE MPPParmType OF

SendRequestParm:

(numOfBuffs: Byte; {number of responses expected}
Summary of ATP 6-47

P
)

C H A P T E R 6

AppleTalk Transaction Protocol (ATP)
timeOutVal: Byte; {timeout interval}

numOfResps: Byte; {number of responses }

{ actually received}

retryCount: Byte; {number of retries}

intBuff: Integer; {used internally for PNSendRequest}

TRelTime: Byte); {TRelease time for extended }

{ send request}

SendResponseParm:

(filler0: Byte; {numOfBuffs}

bdsSize: Byte; {number of BDS elements}

transID: Integer);{transaction ID}

GetRequestParm:

(bitMap: Byte; {bitmap}

filler1: Byte);

AddResponseParm:

(rspNum: Byte; {sequence number}

filler2: Byte);

KillSendReqParm:

(aKillQEl: Ptr)); {pointer to queue element to cancel}

END;

ATPPBPtr = ^ATPParamBlock;

Routines 6

Sending an ATP Request

FUNCTION PSendRequest (thePBPtr: ATPPBPt; async: Boolean): OSErr;

FUNCTION PNSendRequest (thePBPtr: ATPPBPtr; async: Boolean): OSErr;

Opening and Closing an ATP Socket

FUNCTION POpenATPSkt (thePBptr: ATPPBPtr; async: Boolean): OSErr;

FUNCTION PCloseATPSkt (thePBPtr: ATPPBPtr; async: Boolean): OSErr;

Setting Up a Socket to Listen for Requests

FUNCTION PGetRequest (thePBPtr: ATPPBPtr; async: Boolean): OSErr;

Responding to Requests

FUNCTION PSendResponse (thePBPtr: ATPPBPtr; async: Boolean): OSErr;

FUNCTION PAddResponse (thePBPtr: ATPPBPtr; async: Boolean): OSErr;
6-48 Summary of ATP

C H A P T E R 6

AppleTalk Transaction Protocol (ATP)

6
A

ppleTalk Transaction P
rotocol (AT
Canceling Pending ATP Functions

FUNCTION PKillSendReq (thePBPtr: ATPPBPtr; async: Boolean): OSErr;

FUNCTION PRelTCB (thePBPtr: ATPPBPtr; async: Boolean): OSErr;

FUNCTION PKillGetReq (thePBPtr: ATPPBPtr; async: Boolean): OSErr;

FUNCTION ATPKillAllGetReq (thePBPtr: ATPPBPtr; async: Boolean): OSErr;

FUNCTION PRelRspCB (thePBPtr: ATPPBPtr; async: Boolean): OSErr;

Building a Buffer Data Structure

FUNCTION BuildBDS (buffPtr: Ptr; bdsPtr: Ptr; buffSize: Integer):
Integer;

C Summary 6

Constants 6

/*ATP parameter constants*/

#define ATPioCompletion ATP.ioCompletion

#define ATPioResult ATP.ioResult

#define ATPuserData ATP.userData

#define ATPreqTID ATP.reqTID

#define ATPioRefNum ATP.ioRefNum

#define ATPcsCode ATP.csCode

#define ATPatpSocket ATP.atpSocket

#define ATPatpFlags ATP.atpFlags

#define ATPaddrBlock ATP.addrBlock

#define ATPreqLength ATP.reqLength

#define ATPreqPointer ATP.reqPointer

#define ATPbdsPointer ATP.bdsPointer

#define ATPtimeOutVal SREQ.timeOutVal

#define ATPnumOfResps SREQ.numOfResps

#define ATPretryCount SREQ.retryCount

#define ATPnumOfBuffs OTH1.u0.numOfBuffs

#define ATPbitMap OTH1.u0.bitMap

#define ATPrspNum OTH1.u0.rspNum

#define ATPbdsSize OTH2.bdsSize

#define ATPtransID OTH2.transID

#define ATPaKillQEl KILL.aKillQEl
Summary of ATP 6-49

P
)

C H A P T E R 6

AppleTalk Transaction Protocol (ATP)
/*csCodes*/

enum { /*csCodes*/

nSendRequest = 248, /*send request using a specific */

/* socket*/

relRspCB = 249, /*release RspCB*/

closeATPSkt = 250, /*close ATP socket*/

addResponse = 251, /*add response*/

sendResponse = 252, /*send response*/

getRequest = 253, /*get request*/

openATPSkt = 254, /*open ATP socket*/

sendRequest = 255, /*send request*/

relTCB = 256, /*release TCB*/

killGetReq = 257, /*kill getRequest*/

killSendReq = 258, /*kill sendRequest*/

killAllGetReq = 259}; /*kill all getRequests for */

/* a socket*/

/*ATP flags*/

enum {

atpXOvalue = 32, /*ATP exactly-once bit*/

atpEOMvalue = 16, /*ATP end-of-message bit*/

atpSTSvalue = 8, /*ATP send-transmission-status */

/* bit*/

atpTIDValidvalue = 2, /*ATP trans. ID valid bit*/

atpSendChkvalue = 1}; /*ATP send checksum bit*/

Data Types 6

The Buffer Data Structure

struct BDSElement {

short buffSize;

Ptr buffPtr;

short dataSize;

long userBytes;

};

typedef struct BDSElement BDSElement;

typedef BDSElement BDSType[8];

typedef BDSElement *BDSPtr;

typedef char BitMapType;
6-50 Summary of ATP

C H A P T E R 6

AppleTalk Transaction Protocol (ATP)

6
A

ppleTalk Transaction P
rotocol (AT
The Address Block Record

struct AddrBlock {

short aNet;

unsigned char aNode;

unsigned char aSocket;

};

typedef struct AddrBlock AddrBlock;

The ATP Parameter Block

#define MPPATPHeader \

QElem *qLink; /*next queue entry*/\

short qType; /*queue type*/\

short ioTrap; /*routine trap*/\

Ptr ioCmdAddr; /*routine address*/\

ProcPtr ioCompletion; /*completion routine*/\

OSErr ioResult; /*result code*/\

long userData; /*command result (ATP user bytes)*/\

short reqTID; /*request transaction ID*/\

short ioRefNum; /*driver reference number*/\

short csCode; /*call command code*/

typedef struct {

MPPATPHeader

}MPPparms;

#define MOREATPHeader \

char atpSocket; /*currbitmap for requests or ATP */\

/* socket number*/\

char atpFlags; /*control information*/\

AddrBlock addrBlock; /*source/dest. socket address*/\

short reqLength; /*request/response length*/\

Ptr reqPointer; /*pointer to request/response data*/\

Ptr bdsPointer; /*pointer to response BDS*/

typedef struct {

MPPATPHeader

MOREATPHeader

}ATPparms;
Summary of ATP 6-51

P
)

C H A P T E R 6

AppleTalk Transaction Protocol (ATP)
typedef struct {

MPPATPHeader

MOREATPHeader

char filler; /*numOfBuffs*/

char timeOutVal; /*timeout interval*/

char numOfResps; /*number of responses actually */

/* received*/

char retryCount; /*number of retries*/

short intBuff; /*used internally for NSendRequest*/

char TRelTime; /*TRelease time for extended send */

/* request*/

}SendReqparms;

typedef struct {

 MPPATPHeader

 MOREATPHeader

union {

char bitMap; /*bitmap received*/

char numOfBuffs; /*number of responses being sent*/

char rspNum; /*sequence number*/

 } u0;

}ATPmisc1;

typedef struct {

MPPATPHeader

MOREATPHeader

char filler;

char bdsSize; /*number of BDS elements*/

short transID; /*transaction ID*/

}ATPmisc2;

typedef struct {

MPPATPHeader

MOREATPHeader

Ptr aKillQEl; /*pointer to i/o queue element to */

/* cancel*/

}Killparms;

union ATPParamBlock {

ATPparms ATP; /*general ATP parms*/

SendReqparms SREQ; /*send request parms*/

ATPmisc1 OTH1; /*miscellaneous parms*/

ATPmisc2 OTH2; /*miscellaneous parms*/

Killparms KILL; /*kill request parms*/

};
6-52 Summary of ATP

C H A P T E R 6

AppleTalk Transaction Protocol (ATP)

6
A

ppleTalk Transaction P
rotocol (AT
typedef union ATPParamBlock ATPParamBlock;

typedef ATPParamBlock *ATPPBPtr;

Routines 6

Sending an ATP Request

pascal OSErr PSendRequest (ATPPBPtr thePBPtr,Boolean async);

pascal OSErr PNSendRequest (ATPPBPtr thePBPtr,Boolean async);

Opening and Closing an ATP Socket

pascal OSErr POpenATPSkt (ATPPBPtr thePBptr,Boolean async);

pascal OSErr PCloseATPSkt (ATPPBPtr thePBPtr,Boolean async);

Setting Up a Socket to Listen for Requests

pascal OSErr PGetRequest (ATPPBPtr thePBPtr,Boolean async);

Responding to Requests

pascal OSErr PSendResponse (ATPPBPtr thePBPtr,Boolean async);

pascal OSErr PAddResponse (ATPPBPtr thePBPtr,Boolean async);

Canceling Pending ATP Functions

pascal OSErr PKillSendReq (ATPPBPtr thePBPtr,Boolean async);

pascal OSErr PRelTCB (ATPPBPtr thePBPtr,Boolean async);

pascal OSErr PKillGetReq (ATPPBPtr thePBPtr,Boolean async);

pascal OSErr ATPKillAllGetReq
(ATPPBPtr thePBPtr,Boolean async);

pascal OSErr PRelRspCB (ATPPBPtr thePBPtr,Boolean async);

Building a Buffer Data Structure

pascal short BuildBDS (Ptr buffPtr,Ptr bdsPtr,short buffSize);
Summary of ATP 6-53

P
)

C H A P T E R 6

AppleTalk Transaction Protocol (ATP)
Assembly-Language Summary 6

Constants 6

ATP Header

atpControl EQU 0 ;control field (byte)

atpBitmap EQU 1 ;bitmap (requests only) (byte)

atpRespNo EQU 1 ;response number (responses only) (byte)

atpTransID EQU 2 ;transaction ID (word)

atpUserData EQU 4 ;start of user data (long)

atpHdSz EQU 8 ;size of ATP header

ATP Control Field

atpReqCode EQU $40 ;request code after masking

atpRspCode EQU $80 ;response code after masking

atpRelCode EQU $C0 ;release code after masking

atpXOBit EQU 5 ;bit number of exactly-once bit

atpEOMBit EQU 4 ;bit number of end-of-message bit

atpSTSBit EQU 3 ;send transmission status bit number

flagMask EQU $3F ;mask for just flags

controlMask EQU $F8 ;mask for good control bits

ATP Type Code

atp EQU $3 ;ATP type code (in DDP header)

ATP Limits

atpMaxNum EQU 8 ;maximum number of responses per request

atpMaxData EQU $242 ;maximum data size in ATP packet

ATP Command Codes

nSendRequest EQU 248 ;PNSendRequest code

relRspCB EQU 249 ;release RspCB

closeATPSkt EQU 250 ;close ATP socket

addResponse EQU 251 ;add response code

sendResponse EQU 252 ;send response code

getRequest EQU 253 ;get request code
6-54 Summary of ATP

C H A P T E R 6

AppleTalk Transaction Protocol (ATP)

6
A

ppleTalk Transaction P
rotocol (AT
openATPSkt EQU 254 ;open ATP socket

sendRequest EQU 255 ;send request code

relTCB EQU 256 ;release TCB

killGetReq EQU 257 ;kill GetRequest

killSendReq EQU 258 ;kill SendRequest

killAllGetReq EQU 259 ;kill all getRequests for a socket

ATPQueue Element Standard Structure

;arguments passed in the CSParam area

atpSocket EQU $1C ;socket number is first parameter [byte]

atpFlags EQU $1D ;flag [byte]

addrBlock EQU $1E ;start of address block

reqLength EQU $22 ;size of request buffer [word]

reqPointer EQU $24 ;pointer to request buffer or data

bdsPointer EQU $28 ;pointer to buffer data structure (BDS)

guArea EQU $2C ;start of general-use area

userData EQU $12 ;user bytes

ATP Bits

sendCHK EQU 0 ;bit number of send-checksum bit in flags

tidValid EQU 1 ;bit set when TID valid in SendRequest

Data Structures 6

Buffer Data Structure (BDS)

bdsBuffSz EQU 0 ;send: data length

; receive: buffer length

bdsBuffAdr EQU 2 ;send: data address

; receive: buffer address

bdsDataSz EQU 6 ;send: used internally

; receive: data length

bdsUserData EQU 8 ;send: 4 user bytes

; receive: 4 user bytes

bdsEntrySz EQU 12 ;size of a BDS entry
Summary of ATP 6-55

P
)

C H A P T E R 6

AppleTalk Transaction Protocol (ATP)
ATP Parameter Block Common Fields

SendRequest Parameter Variant

NSendRequest Parameter Variant

OpenATPSkt Parameter Variant

0 qLink long reserved
4 qType word reserved
6 ioTrap word reserved
8 ioCmdAddr long reserved

12 ioCompletion long address of completion routine
16 ioResult word result code
18 userData long user bytes
22 reqTID word request transaction ID
24 ioRefNum word driver reference number
26 csCode word command code
28 atpSocket byte current bitmap or socket number

26 csCode word command code; always sendRequest
28 currBitMap byte current bitmap
29 atpFlags byte control information
30 addrBlock long destination socket address
34 reqLength word request size in bytes
36 reqPointer long pointer to request data
40 bdsPointer long pointer to response BDS
44 numOfBuffs byte number of responses expected
45 timeOutVal byte timeout interval
46 numOfResps byte number of responses received
47 retryCount byte number of retries
50 TrelTime byte release time for extended send request

22 reqTID word request transaction ID
26 csCode word command code; always nSendRequest
29 atpFlags byte control information
30 addrBlock long destination socket address
34 reqLength word request size in bytes
36 reqPointer long pointer to request data
40 bdsPointer long pointer to response BDS
44 numOfBuffs byte number of responses expected
45 timeOutVal byte timeout interval
46 numOfResps byte number of responses received
47 retryCount byte number of retries
50 TrelTime byte release time for extended send request

26 csCode word command code; always openATPSkt
30 addrBlock long socket request specification
6-56 Summary of ATP

C H A P T E R 6

AppleTalk Transaction Protocol (ATP)

6
A

ppleTalk Transaction P
rotocol (AT
CloseATPSkt Parameter Variant

GetRequest Parameter Variant

SendResponse Parameter Variant

AddResponse Parameter Variant

KillSendReq Parameter Variant

RelTCB Parameter Variant

KillGetReq Parameter Variant

26 csCode word command code; always closeATPSkt

22 reqTID word request transaction ID
26 csCode word command code; always getRequest
29 atpFlags byte control information
30 addrBlock long destination socket address
34 reqLength word request size in bytes
36 reqPointer long pointer to request data
44 bitMap byte current bitmap

26 csCode word command code; always sendResponse
29 atpFlags byte control information
30 addrBlock long destination socket address
40 bdsPointer long pointer to response BDS
44 numOfBuffs byte number of responses expected
45 bdsSize byte BDS size in elements
46 transID word transaction ID

26 csCode word command code; always addResponse
29 atpFlags byte control information
30 addrBlock long destination socket address
34 reqLength word response size in bytes
36 reqPointer long pointer to response data
44 rspNum byte sequence number
46 transID word transaction ID

26 csCode word command code; always killSendReq
44 aKillQEl long pointer to queue element of function to be removed

26 csCode word command code; always relTCB
30 addrBlock long destination socket address of request
46 transID word transaction ID of request to be canceled

26 csCode word command code; always killGetReq
44 aKillQEl long pointer to queue element of function to be removed
Summary of ATP 6-57

P
)

C H A P T E R 6

AppleTalk Transaction Protocol (ATP)
KillAllGetReq Parameter Variant

RelRspCB Parameter Variant

Result Codes 6

26 csCode word command code; always killAllGetReq

26 csCode word command code; always relRspCB
30 addrBlock long internet socket address of the source of the request
46 transID word transaction ID of request with which the PSendResponse

function to be canceled is associated

noErr 0 No error
paramErr –50 Version number is too high
reqFailed –1096 Retry count exceeded
tooManyReqs –1097 Too many concurrent requests
tooManySkts –1098 Too many responding sockets
badATPSkt –1099 Bad responding socket
badBuffNum –1100 Sequence number out of range
noRelErr –1101 No release received
cbNotFound –1102 The aKillQEl parameter does not point to a PSendRequest or

PNSendRequest queue element
noSendResp –1103 PAddResponse issued before PSendResponse
noDataArea –1104 Too many outstanding ATP calls
reqAborted –1105 Request canceled
6-58 Summary of ATP

	 Title
	 Copyright
	 Table of Contents
	 Figures, Tables, and Listings
	 Preface
	 Introduction to AppleTalk TOC
	 Introduction to AppleTalk
	 AppleTalk Utilities TOC
	 AppleTalk Utilities
	 Name-Binding Protocol (NBP) TOC
	 Name-Binding Protocol (NBP)
	 Zone Information Protocol (ZIP) TOC
	 Zone Information Protocol (ZIP)
	 AppleTalk Data Stream Protocol (ADSP) TOC
	 AppleTalk Data Stream Protocol (ADSP)
	 AppleTalk Transaction Protocol (ATP) TOC
	AppleTalk Transaction Protocol (ATP)
	About ATP
	The ATP Packet Format
	At-Least-Once and Exactly-Once Transactions
	The Buffer Data Structure
	ATP Flags

	Using ATP
	Writing a Requester ATP Application
	Creating a Buffer Data Structure
	Specifying the Parameters for the Send Request Fun...

	Writing a Responder ATP Application
	Opening and Setting Up a Socket to Receive Request...
	Responding to Requests

	Canceling an ATP Function

	ATP Reference
	Data Structures
	The Buffer Data Structure
	The ATP Parameter Block
	The Address Block Record

	Routines
	Sending an ATP Request
	Opening and Closing an ATP Socket
	Setting Up a Socket to Listen for Requests
	Responding to Requests
	Canceling Pending ATP Functions
	Building a Buffer Data Structure

	Summary of ATP
	Pascal Summary
	Constants
	Data Types
	Routines

	C Summary
	Constants
	Data Types
	Routines

	Assembly-Language Summary
	Constants
	Data Structures

	Result Codes

	 Datagram Delivery Protocol (DDP) TOC
	 Datagram Delivery Protocol (DDP)
	 AppleTalk Session Protocol (ASP) TOC
	 AppleTalk Session Protocol (ASP)
	 AppleTalk Filing Protocol (AFP) TOC
	 AppleTalk Filing Protocol (AFP)
	 Link-Access Protocol (LAP) Manager TOC
	 Link-Access Protocol (LAP) Manager
	 Ethernet, Token Ring, Fiber Distribution Data Interface TOC
	 Ethernet, Token Ring, Fiber Distribution Data Interface
	 Multinode Architecture TOC
	 Multinode Architecture
	 Glossary
	 Index
	 Colophon

