Tetap teratur dengan koleksi
Simpan dan kategorikan konten berdasarkan preferensi Anda.
Ini adalah suara Sapi jantan.
Gambar 19. Sapi jantan.
Pada tahun 1906, kompetisi penjurian berat diadakan di
Inggris.
787 peserta menebak berat lembu. Error median dari masing-masing
tebakan adalah 37 lb (error 3,1%). Namun, median keseluruhan
tebakan hanya berbeda 4 kg dari berat sapi yang sebenarnya (540 kg), yang
merupakan error hanya 0,7%.
Gambar 20. Histogram tebakan berat masing-masing.
Anekdot ini mengilustrasikan
Kebijaksanaan massa: Dalam situasi tertentu, pendapat kolektif memberikan penilaian yang sangat baik.
Secara matematis, kebijaksanaan massa dapat dimodelkan dengan
Teorema batas pusat:
Secara informal, error kuadrat antara nilai dan rata-rata N estimasi
yang berisi derau dari nilai ini cenderung nol dengan faktor 1/N.
Namun, jika variabel tidak independen, variansinya akan lebih besar.
Dalam machine learning, ensemble adalah kumpulan model
yang prediksinya dirata-ratakan (atau digabungkan dengan cara tertentu). Jika model
ensemble cukup berbeda tanpa terlalu buruk secara individual, kualitas
ensemble umumnya lebih baik daripada kualitas setiap
model individual. Ensemble memerlukan lebih banyak waktu pelatihan dan inferensi daripada satu
model. Lagi pula, Anda harus melakukan pelatihan dan inferensi pada beberapa model,
bukan satu model.
Secara informal, agar ensemble berfungsi dengan baik, setiap model harus
independen. Sebagai ilustrasi, ensemble yang terdiri dari 10 model yang sama persis (yaitu, sama sekali tidak independen) tidak akan lebih baik daripada model individual. Di sisi lain, memaksa model menjadi independen dapat membuat
model menjadi lebih buruk. Ensembling yang efektif memerlukan keseimbangan antara independensi
model dan kualitas submodelnya.
[[["Mudah dipahami","easyToUnderstand","thumb-up"],["Memecahkan masalah saya","solvedMyProblem","thumb-up"],["Lainnya","otherUp","thumb-up"]],[["Informasi yang saya butuhkan tidak ada","missingTheInformationINeed","thumb-down"],["Terlalu rumit/langkahnya terlalu banyak","tooComplicatedTooManySteps","thumb-down"],["Sudah usang","outOfDate","thumb-down"],["Masalah terjemahan","translationIssue","thumb-down"],["Masalah kode / contoh","samplesCodeIssue","thumb-down"],["Lainnya","otherDown","thumb-down"]],["Terakhir diperbarui pada 2025-07-27 UTC."],[[["\u003cp\u003eThe "wisdom of the crowd" suggests that collective opinions can provide surprisingly accurate judgments, as demonstrated by a 1906 ox weight-guessing competition where the collective guess was remarkably close to the true weight.\u003c/p\u003e\n"],["\u003cp\u003eThis phenomenon can be explained by the Central Limit Theorem, which states that the average of multiple independent estimates tends to converge towards the true value.\u003c/p\u003e\n"],["\u003cp\u003eIn machine learning, ensembles leverage this principle by combining predictions from multiple models, improving overall accuracy when individual models are sufficiently diverse and reasonably accurate.\u003c/p\u003e\n"],["\u003cp\u003eWhile ensembles require more computational resources, their enhanced predictive performance often outweighs the added cost, especially when individual models are carefully selected and combined.\u003c/p\u003e\n"],["\u003cp\u003eAchieving optimal ensemble performance involves striking a balance between ensuring model independence to avoid redundant predictions and maintaining the individual quality of sub-models for overall accuracy.\u003c/p\u003e\n"]]],[],null,["# Random Forest\n\n\u003cbr /\u003e\n\nThis is an Ox.\n\n\n**Figure 19. An ox.**\n\n\u003cbr /\u003e\n\nIn 1906, a [weight judging competition was held in\nEngland](https://www.nature.com/articles/075450a0.pdf).\n787 participants guessed the weight of an ox. The median *error* of individual\nguesses was 37 lb (an error of 3.1%). However, the overall median of the\nguesses was only 9 lb away from the real weight of the ox (1198 lb), which was\nan error of only 0.7%.\n\n**Figure 20. Histogram of individual weight guesses.**\n\nThis anecdote illustrates the\n[Wisdom of the crowd](/machine-learning/glossary#wisdom_of_the_crowd): *In\ncertain situations, collective opinion provides very good judgment.*\n\nMathematically, the wisdom of the crowd can be modeled with the\n[Central limit theorem](https://wikipedia.org/wiki/Central_limit_theorem):\nInformally, the squared error between a value and the average of N noisy\nestimates of this value tends to zero with a 1/N factor.\nHowever, if the variables are not independent, the variance is greater.\n\nIn machine learning, an\n**[ensemble](/machine-learning/glossary#ensemble)** is a collection of models\nwhose predictions are averaged (or aggregated in some way). If the ensemble\nmodels are different enough without being too bad individually, the quality of\nthe ensemble is generally better than the quality of each of the individual\nmodels. An ensemble requires more training and inference time than a single\nmodel. After all, you have to perform training and inference on multiple models\ninstead of a single model.\n\nInformally, for an ensemble to work best, the individual models should be\nindependent. As an illustration, an ensemble composed of 10 of the exact same\nmodels (that is, not independent at all) won't be better than the individual\nmodel. On the other hand, forcing models to be independent could mean making\nthem worse. Effective ensembling requires finding the balance between model\nindependence and the quality of its sub-models."]]