Documentation

reduce() function

reduce() aggregates rows in each input table using a reducer function (fn).

The output for each table is the group key of the table with columns corresponding to each field in the reducer record. If the reducer record contains a column with the same name as a group key column, the group key column’s value is overwritten, and the outgoing group key is changed. However, if two reduced tables write to the same destination group key, the function returns an error.

Dropped columns

reduce() drops any columns that:

  • Are not part of the input table’s group key.
  • Are not explicitly mapped in the identity record or the reducer function (fn).
Function type signature
(<-tables: stream[B], fn: (accumulator: A, r: B) => A, identity: A) => stream[C] where A: Record, B: Record, C: Record

For more information, see Function type signatures.

Parameters

fn

(Required) Reducer function to apply to each row record (r).

The reducer function accepts two parameters:

  • r: Record representing the current row.
  • accumulator: Record returned from the reducer function’s operation on the previous row.

identity

(Required) Record that defines the reducer record and provides initial values for the reducer operation on the first row.

May be used more than once in asynchronous processing use cases. The data type of values in the identity record determine the data type of output values.

tables

Input data. Default is piped-forward data (<-).

Examples

Compute the sum of the value column

import "sampledata"

sampledata.int()
    |> reduce(fn: (r, accumulator) => ({sum: r._value + accumulator.sum}), identity: {sum: 0})

View example input and output

Compute the sum and count in a single reducer

import "sampledata"

sampledata.int()
    |> reduce(
        fn: (r, accumulator) => ({sum: r._value + accumulator.sum, count: accumulator.count + 1}),
        identity: {sum: 0, count: 0},
    )

View example input and output

Compute the product of all values

import "sampledata"

sampledata.int()
    |> reduce(fn: (r, accumulator) => ({prod: r._value * accumulator.prod}), identity: {prod: 1})

View example input and output

Calculate the average of all values

import "sampledata"

sampledata.int()
    |> reduce(
        fn: (r, accumulator) =>
            ({
                count: accumulator.count + 1,
                total: accumulator.total + r._value,
                avg: float(v: accumulator.total + r._value) / float(v: accumulator.count + 1),
            }),
        identity: {count: 0, total: 0, avg: 0.0},
    )

View example input and output


Was this page helpful?

Thank you for your feedback!


New in InfluxDB 3.5

Key enhancements in InfluxDB 3.5 and the InfluxDB 3 Explorer 1.3.

See the Blog Post

InfluxDB 3.5 is now available for both Core and Enterprise, introducing custom plugin repository support, enhanced operational visibility with queryable CLI parameters and manual node management, stronger security controls, and general performance improvements.

InfluxDB 3 Explorer 1.3 brings powerful new capabilities including Dashboards (beta) for saving and organizing your favorite queries, and cache querying for instant access to Last Value and Distinct Value cachesβ€”making Explorer a more comprehensive workspace for time series monitoring and analysis.

For more information, check out:

InfluxDB Docker latest tag changing to InfluxDB 3 Core

On November 3, 2025, the latest tag for InfluxDB Docker images will point to InfluxDB 3 Core. To avoid unexpected upgrades, use specific version tags in your Docker deployments.

If using Docker to install and run InfluxDB, the latest tag will point to InfluxDB 3 Core. To avoid unexpected upgrades, use specific version tags in your Docker deployments. For example, if using Docker to run InfluxDB v2, replace the latest version tag with a specific version tag in your Docker pull command–for example:

docker pull influxdb:2