Documentation

Python Flight client

Apache Arrow Python bindings integrate with Python scripts and applications to query data stored in InfluxDB.

Use InfluxDB 3 client libraries

We recommend using the influxdb3-python Python client library for integrating InfluxDB 3 with your Python application code.

InfluxDB 3 client libraries wrap Apache Arrow Flight clients and provide convenient methods for writing, querying, and processing data stored in InfluxDB Cloud Serverless. Client libraries can query using SQL or InfluxQL.

The following examples show how to use the pyarrow.flight and pandas Python modules to query and format data stored in an InfluxDB Cloud Serverless bucket:

# Using pyarrow>=12.0.0 FlightClient
from pyarrow.flight import FlightClient, Ticket, FlightCallOptions 
import json
import pandas
import tabulate

# Downsampling query groups data into 2-hour bins
sql="""
  SELECT DATE_BIN(INTERVAL '2 hours',
      time,
      '1970-01-01T00:00:00Z') AS time,
    room,
    selector_max(temp, time)['value'] AS 'max temp',
    selector_min(temp, time)['value'] AS 'min temp',
    avg(temp) AS 'average temp'
  FROM home
  GROUP BY
    1,
    room
  ORDER BY room, 1"""
  
flight_ticket = Ticket(json.dumps({
  "namespace_name": "
BUCKET_NAME
"
,
"sql_query": sql, "query_type": "sql" })) token = (b"authorization", bytes(f"Bearer
API_TOKEN
"
.encode('utf-8')))
options = FlightCallOptions(headers=[token]) client = FlightClient(f"grpc+tls://cloud2.influxdata.com:443") reader = client.do_get(flight_ticket, options) arrow_table = reader.read_all() # Use pyarrow and pandas to view and analyze data data_frame = arrow_table.to_pandas() print(data_frame.to_markdown())
# Using pyarrow>=12.0.0 FlightClient
from pyarrow.flight import FlightClient, Ticket, FlightCallOptions 
import json
import pandas
import tabulate

# Downsampling query groups data into 2-hour bins
influxql="""
  SELECT FIRST(temp)
  FROM home 
  WHERE room = 'kitchen'
    AND time >= now() - 100d
    AND time <= now() - 10d
  GROUP BY time(2h)"""
  
flight_ticket = Ticket(json.dumps({
  "namespace_name": "
BUCKET_NAME
"
,
"sql_query": influxql, "query_type": "influxql" })) token = (b"authorization", bytes(f"Bearer
API_TOKEN
"
.encode('utf-8')))
options = FlightCallOptions(headers=[token]) client = FlightClient(f"grpc+tls://cloud2.influxdata.com:443") reader = client.do_get(flight_ticket, options) arrow_table = reader.read_all() # Use pyarrow and pandas to view and analyze data data_frame = arrow_table.to_pandas() print(data_frame.to_markdown())

Replace the following:

  • BUCKET_NAME: your InfluxDB Cloud Serverless bucket
  • API_TOKEN: a token with sufficient permissions to the bucket

Was this page helpful?

Thank you for your feedback!


New in InfluxDB 3.5

Key enhancements in InfluxDB 3.5 and the InfluxDB 3 Explorer 1.3.

See the Blog Post

InfluxDB 3.5 is now available for both Core and Enterprise, introducing custom plugin repository support, enhanced operational visibility with queryable CLI parameters and manual node management, stronger security controls, and general performance improvements.

InfluxDB 3 Explorer 1.3 brings powerful new capabilities including Dashboards (beta) for saving and organizing your favorite queries, and cache querying for instant access to Last Value and Distinct Value cachesβ€”making Explorer a more comprehensive workspace for time series monitoring and analysis.

For more information, check out:

InfluxDB Docker latest tag changing to InfluxDB 3 Core

On November 3, 2025, the latest tag for InfluxDB Docker images will point to InfluxDB 3 Core. To avoid unexpected upgrades, use specific version tags in your Docker deployments.

If using Docker to install and run InfluxDB, the latest tag will point to InfluxDB 3 Core. To avoid unexpected upgrades, use specific version tags in your Docker deployments. For example, if using Docker to run InfluxDB v2, replace the latest version tag with a specific version tag in your Docker pull command–for example:

docker pull influxdb:2

InfluxDB Cloud Serverless