Pipeline APIΒΆ
Experimental pipeline API functionality. Be careful with this API, it's subject to change.
_Pipeline
dataclass
ΒΆ
_Pipeline(_steps: tuple[_Step, ...])
Bases: Generic[_InT, _OutT]
Abstract representation of a chain of validation, transformation, and parsing steps.
transform ΒΆ
Transform the output of the previous step.
If used as the first step in a pipeline, the type of the field is used. That is, the transformation is applied to after the value is parsed to the field's type.
Source code in pydantic/experimental/pipeline.py
134 135 136 137 138 139 140 141 142 143 |
|
validate_as ΒΆ
validate_as(
tp: EllipsisType, *, strict: bool = ...
) -> _Pipeline[_InT, Any]
validate_as(
tp: type[_NewOutT] | EllipsisType,
*,
strict: bool = False
) -> _Pipeline[_InT, Any]
Validate / parse the input into a new type.
If no type is provided, the type of the field is used.
Types are parsed in Pydantic's lax
mode by default,
but you can enable strict
mode by passing strict=True
.
Source code in pydantic/experimental/pipeline.py
152 153 154 155 156 157 158 159 160 161 162 |
|
validate_as_deferred ΒΆ
Parse the input into a new type, deferring resolution of the type until the current class is fully defined.
This is useful when you need to reference the class in it's own type annotations.
Source code in pydantic/experimental/pipeline.py
164 165 166 167 168 169 170 |
|
constrain ΒΆ
constrain(constraint: Ge) -> _Pipeline[_InT, _NewOutGe]
constrain(constraint: Gt) -> _Pipeline[_InT, _NewOutGt]
constrain(constraint: Le) -> _Pipeline[_InT, _NewOutLe]
constrain(constraint: Lt) -> _Pipeline[_InT, _NewOutLt]
constrain(constraint: Len) -> _Pipeline[_InT, _NewOutLen]
constrain(
constraint: MultipleOf,
) -> _Pipeline[_InT, _NewOutT]
constrain(
constraint: Timezone,
) -> _Pipeline[_InT, _NewOutDatetime]
constrain(constraint: Predicate) -> _Pipeline[_InT, _OutT]
constrain(
constraint: Interval,
) -> _Pipeline[_InT, _NewOutInterval]
constrain(constraint: _Eq) -> _Pipeline[_InT, _OutT]
constrain(constraint: _NotEq) -> _Pipeline[_InT, _OutT]
constrain(constraint: _In) -> _Pipeline[_InT, _OutT]
constrain(constraint: _NotIn) -> _Pipeline[_InT, _OutT]
constrain(constraint: _ConstraintAnnotation) -> Any
Constrain a value to meet a certain condition.
We support most conditions from annotated_types
, as well as regular expressions.
Most of the time you'll be calling a shortcut method like gt
, lt
, len
, etc
so you don't need to call this directly.
Source code in pydantic/experimental/pipeline.py
223 224 225 226 227 228 229 230 231 |
|
predicate ΒΆ
Constrain a value to meet a certain predicate.
Source code in pydantic/experimental/pipeline.py
233 234 235 |
|
gt ΒΆ
gt(gt: _NewOutGt) -> _Pipeline[_InT, _NewOutGt]
Constrain a value to be greater than a certain value.
Source code in pydantic/experimental/pipeline.py
237 238 239 |
|
lt ΒΆ
lt(lt: _NewOutLt) -> _Pipeline[_InT, _NewOutLt]
Constrain a value to be less than a certain value.
Source code in pydantic/experimental/pipeline.py
241 242 243 |
|
ge ΒΆ
ge(ge: _NewOutGe) -> _Pipeline[_InT, _NewOutGe]
Constrain a value to be greater than or equal to a certain value.
Source code in pydantic/experimental/pipeline.py
245 246 247 |
|
le ΒΆ
le(le: _NewOutLe) -> _Pipeline[_InT, _NewOutLe]
Constrain a value to be less than or equal to a certain value.
Source code in pydantic/experimental/pipeline.py
249 250 251 |
|
len ΒΆ
Constrain a value to have a certain length.
Source code in pydantic/experimental/pipeline.py
253 254 255 |
|
multiple_of ΒΆ
multiple_of(
multiple_of: _NewOutDiv,
) -> _Pipeline[_InT, _NewOutDiv]
multiple_of(
multiple_of: _NewOutMod,
) -> _Pipeline[_InT, _NewOutMod]
Constrain a value to be a multiple of a certain number.
Source code in pydantic/experimental/pipeline.py
263 264 265 |
|
eq ΒΆ
eq(value: _OutT) -> _Pipeline[_InT, _OutT]
Constrain a value to be equal to a certain value.
Source code in pydantic/experimental/pipeline.py
267 268 269 |
|
not_eq ΒΆ
not_eq(value: _OutT) -> _Pipeline[_InT, _OutT]
Constrain a value to not be equal to a certain value.
Source code in pydantic/experimental/pipeline.py
271 272 273 |
|
in_ ΒΆ
Constrain a value to be in a certain set.
Source code in pydantic/experimental/pipeline.py
275 276 277 |
|
not_in ΒΆ
Constrain a value to not be in a certain set.
Source code in pydantic/experimental/pipeline.py
279 280 281 |
|
otherwise ΒΆ
Combine two validation chains, returning the result of the first chain if it succeeds, and the second chain if it fails.
Source code in pydantic/experimental/pipeline.py
326 327 328 |
|
then ΒΆ
Pipe the result of one validation chain into another.
Source code in pydantic/experimental/pipeline.py
332 333 334 |
|
Arguments schema APIΒΆ
Experimental module exposing a function to generate a core schema that validates callable arguments.
generate_arguments_schema ΒΆ
generate_arguments_schema(
func: Callable[..., Any],
schema_type: Literal[
"arguments", "arguments-v3"
] = "arguments-v3",
parameters_callback: (
Callable[[int, str, Any], Literal["skip"] | None]
| None
) = None,
config: ConfigDict | None = None,
) -> CoreSchema
Generate the schema for the arguments of a function.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
func
|
Callable[..., Any]
|
The function to generate the schema for. |
required |
schema_type
|
Literal['arguments', 'arguments-v3']
|
The type of schema to generate. |
'arguments-v3'
|
parameters_callback
|
Callable[[int, str, Any], Literal['skip'] | None] | None
|
A callable that will be invoked for each parameter. The callback
should take three required arguments: the index, the name and the type annotation
(or |
None
|
config
|
ConfigDict | None
|
The configuration to use. |
None
|
Returns:
Type | Description |
---|---|
CoreSchema
|
The generated schema. |
Source code in pydantic/experimental/arguments_schema.py
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 |
|