Rate this Page
โ˜… โ˜… โ˜… โ˜… โ˜…

SELU#

class torch.nn.modules.activation.SELU(inplace=False)[source]#

Applies the SELU function element-wise.

SELU(x)=scaleโˆ—(maxโก(0,x)+minโก(0,ฮฑโˆ—(expโก(x)โˆ’1)))\text{SELU}(x) = \text{scale} * (\max(0,x) + \min(0, \alpha * (\exp(x) - 1)))

with ฮฑ=1.6732632423543772848170429916717\alpha = 1.6732632423543772848170429916717 and scale=1.0507009873554804934193349852946\text{scale} = 1.0507009873554804934193349852946.

Warning

When using kaiming_normal or kaiming_normal_ for initialisation, nonlinearity='linear' should be used instead of nonlinearity='selu' in order to get Self-Normalizing Neural Networks. See torch.nn.init.calculate_gain() for more information.

More details can be found in the paper Self-Normalizing Neural Networks .

Parameters

inplace (bool, optional) โ€“ can optionally do the operation in-place. Default: False

Shape:
  • Input: (โˆ—)(*), where โˆ—* means any number of dimensions.

  • Output: (โˆ—)(*), same shape as the input.

../_images/SELU.png

Examples:

>>> m = nn.SELU()
>>> input = torch.randn(2)
>>> output = m(input)
extra_repr()[source]#

Return the extra representation of the module.

Return type

str

forward(input)[source]#

Runs the forward pass.

Return type

Tensor