Rate this Page
โ˜… โ˜… โ˜… โ˜… โ˜…

torch.nn.functional.conv_transpose1d#

torch.nn.functional.conv_transpose1d(input, weight, bias=None, stride=1, padding=0, output_padding=0, groups=1, dilation=1) โ†’ Tensor#

Applies a 1D transposed convolution operator over an input signal composed of several input planes, sometimes also called โ€œdeconvolutionโ€.

This operator supports TensorFloat32.

See ConvTranspose1d for details and output shape.

Note

In some circumstances when given tensors on a CUDA device and using CuDNN, this operator may select a nondeterministic algorithm to increase performance. If this is undesirable, you can try to make the operation deterministic (potentially at a performance cost) by setting torch.backends.cudnn.deterministic = True. See Reproducibility for more information.

Parameters
  • input โ€“ input tensor of shape (minibatch,in_channels,iW)(\text{minibatch} , \text{in\_channels} , iW)

  • weight โ€“ filters of shape (in_channels,out_channelsgroups,kW)(\text{in\_channels} , \frac{\text{out\_channels}}{\text{groups}} , kW)

  • bias โ€“ optional bias of shape (out_channels)(\text{out\_channels}). Default: None

  • stride โ€“ the stride of the convolving kernel. Can be a single number or a tuple (sW,). Default: 1

  • padding โ€“ dilation * (kernel_size - 1) - padding zero-padding will be added to both sides of each dimension in the input. Can be a single number or a tuple (padW,). Default: 0

  • output_padding โ€“ additional size added to one side of each dimension in the output shape. Can be a single number or a tuple (out_padW). Default: 0

  • groups โ€“ split input into groups, in_channels\text{in\_channels} should be divisible by the number of groups. Default: 1

  • dilation โ€“ the spacing between kernel elements. Can be a single number or a tuple (dW,). Default: 1

Examples:

>>> inputs = torch.randn(20, 16, 50)
>>> weights = torch.randn(16, 33, 5)
>>> F.conv_transpose1d(inputs, weights)