solve#
- scipy.linalg.solve(a, b, lower=False, overwrite_a=False, overwrite_b=False, check_finite=True, assume_a=None, transposed=False)[source]#
Solve the equation
a @ x = b
forx
, where a is a square matrix.If the data matrix is known to be a particular type then supplying the corresponding string to
assume_a
key chooses the dedicated solver. The available options arediagonal
βdiagonalβ
tridiagonal
βtridiagonalβ
banded
βbandedβ
upper triangular
βupper triangularβ
lower triangular
βlower triangularβ
symmetric
βsymmetricβ (or βsymβ)
hermitian
βhermitianβ (or βherβ)
symmetric positive definite
βpositive definiteβ (or βposβ)
general
βgeneralβ (or βgenβ)
The documentation is written assuming array arguments are of specified βcoreβ shapes. However, array argument(s) of this function may have additional βbatchβ dimensions prepended to the core shape. In this case, the array is treated as a batch of lower-dimensional slices; see Batched Linear Operations for details.
- Parameters:
- a(N, N) array_like
Square input data
- b(N, NRHS) array_like
Input data for the right hand side.
- lowerbool, default: False
Ignored unless
assume_a
is one of'sym'
,'her'
, or'pos'
. If True, the calculation uses only the data in the lower triangle of a; entries above the diagonal are ignored. If False (default), the calculation uses only the data in the upper triangle of a; entries below the diagonal are ignored.- overwrite_abool, default: False
Allow overwriting data in a (may enhance performance).
- overwrite_bbool, default: False
Allow overwriting data in b (may enhance performance).
- check_finitebool, default: True
Whether to check that the input matrices contain only finite numbers. Disabling may give a performance gain, but may result in problems (crashes, non-termination) if the inputs do contain infinities or NaNs.
- assume_astr, optional
Valid entries are described above. If omitted or
None
, checks are performed to identify structure so the appropriate solver can be called.- transposedbool, default: False
If True, solve
a.T @ x == b
. Raises NotImplementedError for complex a.
- Returns:
- x(N, NRHS) ndarray
The solution array.
- Raises:
- ValueError
If size mismatches detected or input a is not square.
- LinAlgError
If the computation fails because of matrix singularity.
- LinAlgWarning
If an ill-conditioned input a is detected.
- NotImplementedError
If transposed is True and input a is a complex matrix.
Notes
If the input b matrix is a 1-D array with N elements, when supplied together with an NxN input a, it is assumed as a valid column vector despite the apparent size mismatch. This is compatible with the numpy.dot() behavior and the returned result is still 1-D array.
The general, symmetric, Hermitian and positive definite solutions are obtained via calling ?GESV, ?SYSV, ?HESV, and ?POSV routines of LAPACK respectively.
The datatype of the arrays define which solver is called regardless of the values. In other words, even when the complex array entries have precisely zero imaginary parts, the complex solver will be called based on the data type of the array.
Examples
Given a and b, solve for x:
>>> import numpy as np >>> a = np.array([[3, 2, 0], [1, -1, 0], [0, 5, 1]]) >>> b = np.array([2, 4, -1]) >>> from scipy import linalg >>> x = linalg.solve(a, b) >>> x array([ 2., -2., 9.]) >>> np.dot(a, x) == b array([ True, True, True], dtype=bool)