scipy.optimize.

SR1#

class scipy.optimize.SR1(min_denominator=1e-08, init_scale='auto')[source]#

Symmetric-rank-1 Hessian update strategy.

Parameters:
min_denominatorfloat

This number, scaled by a normalization factor, defines the minimum denominator magnitude allowed in the update. When the condition is violated we skip the update. By default uses 1e-8.

init_scale{float, np.array, β€˜auto’}, optional

This parameter can be used to initialize the Hessian or its inverse. When a float is given, the relevant array is initialized to np.eye(n) * init_scale, where n is the problem dimension. Alternatively, if a precisely (n, n) shaped, symmetric array is given, this array will be used. Otherwise an error is generated. Set it to β€˜auto’ in order to use an automatic heuristic for choosing the initial scale. The heuristic is described in [1], p.143. The default is β€˜auto’.

Methods

dot(p)

Compute the product of the internal matrix with the given vector.

get_matrix()

Return the current internal matrix.

initialize(n, approx_type)

Initialize internal matrix.

update(delta_x, delta_grad)

Update internal matrix.

Notes

The update is based on the description in [1], p.144-146.

References

[1] (1,2)

Nocedal, Jorge, and Stephen J. Wright. β€œNumerical optimization” Second Edition (2006).