|
| 1 | +from random import random |
| 2 | +from time import perf_counter |
| 3 | +import pytest |
| 4 | +from constraint import Problem |
| 5 | +from math import sqrt |
| 6 | + |
| 7 | + |
| 8 | +# reference times (using A4000 on DAS6) |
| 9 | +reference_microbenchmark_mean = [0.3784186691045761, 0.4737640768289566, 0.10726054509480794, 0.10744890073935191, 0.10979799057046573, 0.15360217044750848, 0.14483965436617532, 0.054416230569283165, 0.13835338006416956, 0.1371802551050981] # noqa E501 |
| 10 | +reference_results = { |
| 11 | + "microhh": 1.1565620, |
| 12 | + "dedispersion": 0.1171140, |
| 13 | + "hotspot": 2.6839208, |
| 14 | +} |
| 15 | +# device properties (for A4000 on DAS6 using get_opencl_device_info.cpp) |
| 16 | +dev = { |
| 17 | + "max_threads": 1024, |
| 18 | + "max_threads_per_sm": 1024, |
| 19 | + "max_threads_per_block": 1536, |
| 20 | + "max_shared_memory_per_block": 49152, |
| 21 | + "max_shared_memory": 102400, |
| 22 | + "max_wi_size": [1024, 1024, 64], |
| 23 | + "max_wg_size": 1024, |
| 24 | +} |
| 25 | +# collect benchmark times |
| 26 | +benchmark_results = dict() |
| 27 | + |
| 28 | +@pytest.mark.skip |
| 29 | +def get_performance_factor(repeats=3): |
| 30 | + """Run microbenchmarks to indicate how much slower this system is compared to the reference.""" |
| 31 | + |
| 32 | + def cpu_1(): |
| 33 | + """Matrix multiplication""" |
| 34 | + size = 100 |
| 35 | + A = [[random() for _ in range(size)] for _ in range(size)] |
| 36 | + B = [[random() for _ in range(size)] for _ in range(size)] |
| 37 | + result = [[sum(A[i][k] * B[k][j] for k in range(size)) for j in range(size)] for i in range(size)] |
| 38 | + return result |
| 39 | + |
| 40 | + def cpu_2(): |
| 41 | + """Element-wise arithmetic""" |
| 42 | + N = 10**6 |
| 43 | + A = [random() for _ in range(N)] |
| 44 | + B = [random() for _ in range(N)] |
| 45 | + return [A[i] + B[i] for i in range(N)] |
| 46 | + |
| 47 | + def cpu_3(): |
| 48 | + """Addition""" |
| 49 | + N = 10**6 |
| 50 | + return [i + i for i in range(N)] |
| 51 | + |
| 52 | + def cpu_4(): |
| 53 | + """Multiplication""" |
| 54 | + N = 10**6 |
| 55 | + return [i * i for i in range(N)] |
| 56 | + |
| 57 | + def cpu_5(): |
| 58 | + """Division""" |
| 59 | + N = 10**6 |
| 60 | + return [i / i for i in range(1, N+1)] |
| 61 | + |
| 62 | + def mem_1(): |
| 63 | + """Array copying""" |
| 64 | + N = 10**6 |
| 65 | + A = [random() for _ in range(N)] |
| 66 | + return A.copy() |
| 67 | + |
| 68 | + def mem_2(): |
| 69 | + """Array slicing""" |
| 70 | + N = 10**6 |
| 71 | + A = [random() for _ in range(N)] |
| 72 | + return A[::2] |
| 73 | + |
| 74 | + def mem_3(): |
| 75 | + """Dictionary lookup""" |
| 76 | + N = 10**3 |
| 77 | + keys = list(range(N)) |
| 78 | + values = list(range(N)) |
| 79 | + lst = list(zip(keys, values)) |
| 80 | + return [next((v for k, v in lst if k == i), None) for i in range(N)] |
| 81 | + |
| 82 | + def cache_1(): |
| 83 | + """Sequential array sum""" |
| 84 | + N = 10**6 |
| 85 | + A = [random() for _ in range(N)] |
| 86 | + return sum(A) |
| 87 | + |
| 88 | + def cache_2(): |
| 89 | + """Strided array sum""" |
| 90 | + N = 10**6 |
| 91 | + A = [random() for _ in range(N)] |
| 92 | + return sum(A[::2]) |
| 93 | + |
| 94 | + # run the benchmarks |
| 95 | + benchmarks = [cpu_1, cpu_2, cpu_3, cpu_4, cpu_5, mem_1, mem_2, mem_3, cache_1, cache_2] |
| 96 | + raw_data = [list() for _ in range(repeats)] |
| 97 | + for i in range(repeats): |
| 98 | + for f in benchmarks: |
| 99 | + start = perf_counter() |
| 100 | + f() |
| 101 | + duration = perf_counter() - start |
| 102 | + raw_data[i].append(duration) |
| 103 | + |
| 104 | + # non-Numpy implementation of statistics calculation |
| 105 | + transposed_data = list(zip(*raw_data)) # transpose the raw_data to get columns as rows |
| 106 | + |
| 107 | + # calculate mean along axis=0 (column-wise) (`benchmark_data.mean(axis=0)`) |
| 108 | + benchmark_mean = [sum(column) / len(column) for column in transposed_data] |
| 109 | + |
| 110 | + # calculate standard deviation along axis=0 (column-wise) |
| 111 | + def stddev(column, mean): |
| 112 | + variance = sum((x - mean) ** 2 for x in column) / len(column) |
| 113 | + return sqrt(variance) |
| 114 | + |
| 115 | + # calculate relative standard deviation (`(benchmark_data.std(axis=0) / abs(np_benchmark_mean))`) |
| 116 | + benchmark_std = [stddev(column, mean) for column, mean in zip(transposed_data, benchmark_mean)] |
| 117 | + relative_std = [(s / abs(m)) if m != 0 else 0 for s, m in zip(benchmark_std, benchmark_mean)] |
| 118 | + |
| 119 | + # calculate mean relative standard deviation and apply threshold (`max(np.mean(np_relative_std), 0.125)`) |
| 120 | + mean_relative_std = max(sum(relative_std) / len(relative_std), 0.125) |
| 121 | + |
| 122 | + # calculate performance factor (`np.mean(np_benchmark_mean / reference_microbenchmark_mean)`) |
| 123 | + performance_factor = sum(bm / rm for bm, rm in zip(benchmark_mean, reference_microbenchmark_mean)) / len(benchmark_mean) |
| 124 | + return performance_factor, mean_relative_std |
| 125 | + |
| 126 | +performance_factor, mean_relative_std = get_performance_factor() |
| 127 | +print(f"\nSystem performance factor: {round(performance_factor, 3)}") |
| 128 | + |
| 129 | +@pytest.mark.skip |
| 130 | +def check_benchmark_performance(benchmark_name, mean, std): |
| 131 | + """Utility function to check whether the performance of a benchmark is within the expected range and print information.""" |
| 132 | + reference_result = reference_results[benchmark_name] |
| 133 | + assert mean - std * 2 <= reference_result * (performance_factor + mean_relative_std * 2) |
| 134 | + print(f"Reference: {round(reference_result, 3)}, benchmark: {round(mean, 3)}, expected: {round(reference_result * performance_factor, 3)}") |
| 135 | + |
| 136 | + |
| 137 | +def test_microhh(benchmark): |
| 138 | + """Based on the MicroHH search space in the paper.""" |
| 139 | + benchmark_name = "microhh" |
| 140 | + |
| 141 | + cta_padding = 0 # default argument |
| 142 | + |
| 143 | + # setup the tunable parameters |
| 144 | + problem = Problem() |
| 145 | + problem.addVariable("STATIC_STRIDES", [0]) |
| 146 | + problem.addVariable("TILING_STRATEGY", [0]) |
| 147 | + problem.addVariable("REWRITE_INTERP", [0]) |
| 148 | + problem.addVariable("BLOCK_SIZE_X", [1, 2, 4, 8, 16, 32, 128, 256, 512, 1024]) |
| 149 | + problem.addVariable("BLOCK_SIZE_Y", [1, 2, 4, 8, 16, 32]) |
| 150 | + problem.addVariable("BLOCK_SIZE_Z", [1, 2, 4]) |
| 151 | + problem.addVariable("TILING_FACTOR_X", [1, 2, 4, 8]) |
| 152 | + problem.addVariable("TILING_FACTOR_Y", [1, 2, 4]) |
| 153 | + problem.addVariable("TILING_FACTOR_Z", [1, 2, 4]) |
| 154 | + problem.addVariable("LOOP_UNROLL_FACTOR_X",[1, 2, 4, 8]) |
| 155 | + problem.addVariable("LOOP_UNROLL_FACTOR_Y", [1, 2, 4]) |
| 156 | + problem.addVariable("LOOP_UNROLL_FACTOR_Z", [1, 2, 4]) |
| 157 | + problem.addVariable("BLOCKS_PER_MP", [0, 1, 2, 3, 4]) |
| 158 | + |
| 159 | + # setup the restrictions |
| 160 | + problem.addConstraint([ |
| 161 | + f"BLOCK_SIZE_X * BLOCK_SIZE_Y * BLOCK_SIZE_Z * BLOCKS_PER_MP <= {dev['max_threads_per_sm']}", |
| 162 | + f"32 <= BLOCK_SIZE_X * BLOCK_SIZE_Y * BLOCK_SIZE_Z <= {dev['max_threads_per_block']}", |
| 163 | + "LOOP_UNROLL_FACTOR_X == 0 or TILING_FACTOR_X % LOOP_UNROLL_FACTOR_X == 0", |
| 164 | + "LOOP_UNROLL_FACTOR_Y == 0 or TILING_FACTOR_Y % LOOP_UNROLL_FACTOR_Y == 0", |
| 165 | + "LOOP_UNROLL_FACTOR_Z == 0 or TILING_FACTOR_Z % LOOP_UNROLL_FACTOR_Z == 0", |
| 166 | + f"BLOCK_SIZE_X * TILING_FACTOR_X > {cta_padding}", |
| 167 | + f"BLOCK_SIZE_Y * TILING_FACTOR_Y > {cta_padding}", |
| 168 | + f"BLOCK_SIZE_Z * TILING_FACTOR_Z > {cta_padding}", |
| 169 | + ]) |
| 170 | + |
| 171 | + # run the benchmark and check for valid outcome and performance degradation |
| 172 | + solutions = benchmark(problem.getSolutions) |
| 173 | + reference_result = reference_results[benchmark_name] |
| 174 | + benchmark_result = benchmark.stats.stats.mean |
| 175 | + benchmark_results[benchmark_name] = benchmark_result |
| 176 | + assert len(solutions) == 138600 |
| 177 | + check_benchmark_performance(benchmark_name, benchmark_result, benchmark.stats.stats.stddev) |
| 178 | + |
| 179 | + |
| 180 | +def test_dedispersion(benchmark): |
| 181 | + """Based on the Dedispersion search space in the paper.""" |
| 182 | + benchmark_name = "dedispersion" |
| 183 | + |
| 184 | + # setup the tunable parameters |
| 185 | + problem = Problem() |
| 186 | + problem.addVariable("block_size_x", [1, 2, 4, 8] + [16 * i for i in range(1, 3)]) |
| 187 | + problem.addVariable("block_size_y", [8 * i for i in range(4, 33)]) |
| 188 | + problem.addVariable("block_size_z", [1]) |
| 189 | + problem.addVariable("tile_size_x", [i for i in range(1, 5)]) |
| 190 | + problem.addVariable("tile_size_y", [i for i in range(1, 9)]) |
| 191 | + problem.addVariable("tile_stride_x", [0, 1]) |
| 192 | + problem.addVariable("tile_stride_y", [0, 1]) |
| 193 | + problem.addVariable("loop_unroll_factor_channel", [ |
| 194 | + 0 |
| 195 | + ]) |
| 196 | + |
| 197 | + # setup the restrictions |
| 198 | + check_block_size = "32 <= block_size_x * block_size_y <= 1024" |
| 199 | + check_tile_stride_x = "tile_size_x > 1 or tile_stride_x == 0" |
| 200 | + check_tile_stride_y = "tile_size_y > 1 or tile_stride_y == 0" |
| 201 | + problem.addConstraint([check_block_size, check_tile_stride_x, check_tile_stride_y]) |
| 202 | + |
| 203 | + # run the benchmark and check for valid outcome and performance degradation |
| 204 | + solutions = benchmark(problem.getSolutions) |
| 205 | + reference_result = reference_results[benchmark_name] |
| 206 | + benchmark_result = benchmark.stats.stats.mean |
| 207 | + benchmark_results[benchmark_name] = benchmark_result |
| 208 | + assert len(solutions) == 11130 |
| 209 | + check_benchmark_performance(benchmark_name, benchmark_result, benchmark.stats.stats.stddev) |
| 210 | + |
| 211 | + |
| 212 | +def test_hotspot(benchmark): |
| 213 | + """Based on the Hotspot search space in the paper.""" |
| 214 | + benchmark_name = "hotspot" |
| 215 | + |
| 216 | + # constants |
| 217 | + temporal_tiling_factor = [i for i in range(1, 11)] |
| 218 | + max_tfactor = max(temporal_tiling_factor) |
| 219 | + |
| 220 | + # setup the tunable parameters |
| 221 | + problem = Problem() |
| 222 | + problem.addVariable("block_size_x", [1, 2, 4, 8, 16] + [32 * i for i in range(1, 33)]) |
| 223 | + problem.addVariable("block_size_y", [2**i for i in range(6)]) |
| 224 | + problem.addVariable("tile_size_x", [i for i in range(1, 11)]) |
| 225 | + problem.addVariable("tile_size_y", [i for i in range(1, 11)]) |
| 226 | + problem.addVariable("temporal_tiling_factor", temporal_tiling_factor) |
| 227 | + problem.addVariable("max_tfactor", [max_tfactor]) |
| 228 | + problem.addVariable("loop_unroll_factor_t", [i for i in range(1, max_tfactor + 1)]) |
| 229 | + problem.addVariable("sh_power", [0, 1]) |
| 230 | + problem.addVariable("blocks_per_sm", [0, 1, 2, 3, 4]) |
| 231 | + |
| 232 | + # setup the restrictions |
| 233 | + problem.addConstraint([ |
| 234 | + "block_size_x*block_size_y >= 32", |
| 235 | + "temporal_tiling_factor % loop_unroll_factor_t == 0", |
| 236 | + f"block_size_x*block_size_y <= {dev['max_threads']}", |
| 237 | + f"(block_size_x*tile_size_x + temporal_tiling_factor * 2) * (block_size_y*tile_size_y + temporal_tiling_factor * 2) * (2+sh_power) * 4 <= {dev['max_shared_memory_per_block']}", |
| 238 | + f"blocks_per_sm == 0 or (((block_size_x*tile_size_x + temporal_tiling_factor * 2) * (block_size_y*tile_size_y + temporal_tiling_factor * 2) * (2+sh_power) * 4) * blocks_per_sm <= {dev['max_shared_memory']})", |
| 239 | + ]) |
| 240 | + |
| 241 | + # run the benchmark and check for valid outcome and performance degradation |
| 242 | + solutions = benchmark(problem.getSolutions) |
| 243 | + reference_result = reference_results[benchmark_name] |
| 244 | + benchmark_result = benchmark.stats.stats.mean |
| 245 | + benchmark_results[benchmark_name] = benchmark_result |
| 246 | + assert len(solutions) == 349853 |
| 247 | + check_benchmark_performance(benchmark_name, benchmark_result, benchmark.stats.stats.stddev) |
0 commit comments