45#define DEBUG_TYPE "hardware-loops"
47#define HW_LOOPS_NAME "Hardware Loop Insertion"
53 cl::desc(
"Force hardware loops intrinsics to be inserted"));
58 cl::desc(
"Force hardware loop counter to be updated through a phi"));
62 cl::desc(
"Force allowance of nested hardware loops"));
66 cl::desc(
"Set the loop decrement value"));
70 cl::desc(
"Set the loop counter bitwidth"));
75 cl::desc(
"Force generation of loop guard intrinsic"));
77STATISTIC(NumHWLoops,
"Number of loops converted to hardware loops");
82 dbgs() <<
"HWLoops: " << DebugMsg;
97 CodeRegion =
I->getParent();
100 if (
I->getDebugLoc())
101 DL =
I->getDebugLoc();
105 R <<
"hardware-loop not created: ";
123 HardwareLoopsLegacy() : FunctionPass(ID) {
129 void getAnalysisUsage(AnalysisUsage &AU)
const override {
138 AU.
addRequired<OptimizationRemarkEmitterWrapperPass>();
143 class HardwareLoopsImpl {
145 HardwareLoopsImpl(ScalarEvolution &SE, LoopInfo &LI,
bool PreserveLCSSA,
146 DominatorTree &DT,
const DataLayout &DL,
147 const TargetTransformInfo &TTI, TargetLibraryInfo *TLI,
148 AssumptionCache &AC, OptimizationRemarkEmitter *ORE,
149 HardwareLoopOptions &Opts)
150 : SE(SE), LI(LI), PreserveLCSSA(PreserveLCSSA), DT(DT), DL(DL), TTI(TTI),
151 TLI(TLI), AC(AC), ORE(ORE), Opts(Opts) { }
153 bool run(Function &
F);
157 bool TryConvertLoop(Loop *L, LLVMContext &Ctx);
161 bool TryConvertLoop(HardwareLoopInfo &HWLoopInfo);
167 const DataLayout &DL;
168 const TargetTransformInfo &TTI;
169 TargetLibraryInfo *TLI =
nullptr;
171 OptimizationRemarkEmitter *ORE;
172 HardwareLoopOptions &Opts;
173 bool MadeChange =
false;
178 Value *InitLoopCount();
181 Value *InsertIterationSetup(
Value *LoopCountInit);
184 void InsertLoopDec();
192 PHINode *InsertPHICounter(
Value *NumElts,
Value *EltsRem);
196 void UpdateBranch(
Value *EltsRem);
199 HardwareLoop(HardwareLoopInfo &
Info, ScalarEvolution &SE,
200 const DataLayout &DL,
201 OptimizationRemarkEmitter *ORE,
202 HardwareLoopOptions &Opts) :
203 SE(SE), DL(DL), ORE(ORE), Opts(Opts), L(
Info.L), M(L->getHeader()->getModule()),
204 ExitCount(
Info.ExitCount),
205 CountType(
Info.CountType),
206 ExitBranch(
Info.ExitBranch),
207 LoopDecrement(
Info.LoopDecrement),
208 UsePHICounter(
Info.CounterInReg),
209 UseLoopGuard(
Info.PerformEntryTest) { }
215 const DataLayout &DL;
216 OptimizationRemarkEmitter *ORE =
nullptr;
217 HardwareLoopOptions &Opts;
220 const SCEV *ExitCount =
nullptr;
221 Type *CountType =
nullptr;
222 BranchInst *ExitBranch =
nullptr;
223 Value *LoopDecrement =
nullptr;
224 bool UsePHICounter =
false;
225 bool UseLoopGuard =
false;
230char HardwareLoopsLegacy::ID = 0;
232bool HardwareLoopsLegacy::runOnFunction(
Function &
F) {
238 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
239 auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
240 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
241 auto &
TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(
F);
242 auto &
DL =
F.getDataLayout();
243 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
244 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
245 auto *TLI = TLIP ? &TLIP->getTLI(
F) :
nullptr;
246 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(
F);
247 bool PreserveLCSSA = mustPreserveAnalysisID(
LCSSAID);
249 HardwareLoopOptions Opts;
263 HardwareLoopsImpl Impl(SE, LI, PreserveLCSSA, DT,
DL,
TTI, TLI, AC, ORE,
277 auto &
DL =
F.getDataLayout();
279 HardwareLoopsImpl Impl(SE, LI,
true, DT,
DL,
TTI, TLI, AC, ORE, Opts);
292bool HardwareLoopsImpl::run(
Function &
F) {
295 if (L->isOutermost())
296 TryConvertLoop(L, Ctx);
304 bool AnyChanged =
false;
306 AnyChanged |= TryConvertLoop(SL, Ctx);
308 reportHWLoopFailure(
"nested hardware-loops not supported",
"HWLoopNested",
313 LLVM_DEBUG(
dbgs() <<
"HWLoops: Loop " <<
L->getHeader()->getName() <<
"\n");
315 HardwareLoopInfo HWLoopInfo(L);
316 if (!HWLoopInfo.canAnalyze(LI)) {
317 reportHWLoopFailure(
"cannot analyze loop, irreducible control flow",
318 "HWLoopCannotAnalyze", ORE, L);
324 reportHWLoopFailure(
"it's not profitable to create a hardware-loop",
325 "HWLoopNotProfitable", ORE, L);
335 HWLoopInfo.LoopDecrement =
336 ConstantInt::get(HWLoopInfo.CountType, Opts.
Decrement.value());
338 MadeChange |= TryConvertLoop(HWLoopInfo);
339 return MadeChange && (!HWLoopInfo.IsNestingLegal && !Opts.
ForceNested);
342bool HardwareLoopsImpl::TryConvertLoop(HardwareLoopInfo &HWLoopInfo) {
344 Loop *
L = HWLoopInfo.
L;
345 LLVM_DEBUG(
dbgs() <<
"HWLoops: Try to convert profitable loop: " << *L);
352 reportHWLoopFailure(
"loop is not a candidate",
"HWLoopNoCandidate", ORE, L);
358 "Hardware Loop must have set exit info.");
368 HardwareLoop HWLoop(HWLoopInfo, SE,
DL, ORE, Opts);
374void HardwareLoop::Create() {
377 Value *LoopCountInit = InitLoopCount();
378 if (!LoopCountInit) {
379 reportHWLoopFailure(
"could not safely create a loop count expression",
380 "HWLoopNotSafe", ORE, L);
384 Value *
Setup = InsertIterationSetup(LoopCountInit);
386 if (UsePHICounter || Opts.
ForcePhi) {
387 Instruction *LoopDec = InsertLoopRegDec(LoopCountInit);
388 Value *EltsRem = InsertPHICounter(Setup, LoopDec);
390 UpdateBranch(LoopDec);
396 for (
auto *
I :
L->blocks())
401 BasicBlock *Preheader = L->getLoopPreheader();
410 if (BI->isUnconditional() || !
isa<ICmpInst>(BI->getCondition()))
417 if (!ICmp->isEquality())
427 Value *CountBefZext =
430 if (!IsCompareZero(ICmp,
Count, 0) && !IsCompareZero(ICmp,
Count, 1) &&
431 !IsCompareZero(ICmp, CountBefZext, 0) &&
432 !IsCompareZero(ICmp, CountBefZext, 1))
436 if (BI->getSuccessor(SuccIdx) != Preheader)
442Value *HardwareLoop::InitLoopCount() {
443 LLVM_DEBUG(
dbgs() <<
"HWLoops: Initialising loop counter value:\n");
447 SCEVExpander SCEVE(SE,
DL,
"loopcnt");
449 ExitCount->
getType() != CountType)
464 UseLoopGuard =
false;
472 if (!SCEVE.isSafeToExpandAt(ExitCount, Predecessor->
getTerminator()))
473 UseLoopGuard =
false;
478 if (!SCEVE.isSafeToExpandAt(ExitCount, BB->
getTerminator())) {
480 << *ExitCount <<
"\n");
484 Value *
Count = SCEVE.expandCodeFor(ExitCount, CountType,
495 BeginBB = UseLoopGuard ? BB :
L->getLoopPreheader();
497 <<
" - Expanded Count in " << BB->
getName() <<
"\n"
498 <<
" - Will insert set counter intrinsic into: "
499 << BeginBB->
getName() <<
"\n");
503Value* HardwareLoop::InsertIterationSetup(
Value *LoopCountInit) {
506 Builder.setIsFPConstrained(
true);
508 bool UsePhi = UsePHICounter || Opts.
ForcePhi;
510 ? (UsePhi ? Intrinsic::test_start_loop_iterations
511 : Intrinsic::test_set_loop_iterations)
512 : (UsePhi ?
Intrinsic::start_loop_iterations
514 Value *LoopSetup = Builder.CreateIntrinsic(
ID, Ty, LoopCountInit);
520 "Expected conditional branch");
523 UsePhi ? Builder.CreateExtractValue(LoopSetup, 1) : LoopSetup;
525 LoopGuard->setCondition(SetCount);
526 if (LoopGuard->getSuccessor(0) !=
L->getLoopPreheader())
527 LoopGuard->swapSuccessors();
529 LLVM_DEBUG(
dbgs() <<
"HWLoops: Inserted loop counter: " << *LoopSetup
531 if (UsePhi && UseLoopGuard)
532 LoopSetup = Builder.CreateExtractValue(LoopSetup, 0);
533 return !UsePhi ? LoopCountInit : LoopSetup;
536void HardwareLoop::InsertLoopDec() {
538 if (ExitBranch->
getParent()->getParent()->getAttributes().hasFnAttr(
539 Attribute::StrictFP))
540 CondBuilder.setIsFPConstrained(
true);
543 Value *NewCond = CondBuilder.CreateIntrinsic(Intrinsic::loop_decrement,
556 LLVM_DEBUG(
dbgs() <<
"HWLoops: Inserted loop dec: " << *NewCond <<
"\n");
561 if (ExitBranch->
getParent()->getParent()->getAttributes().hasFnAttr(
562 Attribute::StrictFP))
563 CondBuilder.setIsFPConstrained(
true);
566 Value *
Call = CondBuilder.CreateIntrinsic(Intrinsic::loop_decrement_reg,
573PHINode* HardwareLoop::InsertPHICounter(
Value *NumElts,
Value *EltsRem) {
577 IRBuilder<> Builder(Header, Header->getFirstNonPHIIt());
578 PHINode *
Index = Builder.CreatePHI(NumElts->
getType(), 2);
579 Index->addIncoming(NumElts, Preheader);
580 Index->addIncoming(EltsRem, Latch);
585void HardwareLoop::UpdateBranch(
Value *EltsRem) {
588 CondBuilder.CreateICmpNE(EltsRem, ConstantInt::get(EltsRem->
getType(), 0));
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
Analysis containing CSE Info
This file contains the declarations for the subclasses of Constant, which represent the different fla...
static bool runOnFunction(Function &F, bool PostInlining)
static cl::opt< bool > ForceNestedLoop("force-nested-hardware-loop", cl::Hidden, cl::init(false), cl::desc("Force allowance of nested hardware loops"))
static cl::opt< unsigned > CounterBitWidth("hardware-loop-counter-bitwidth", cl::Hidden, cl::init(32), cl::desc("Set the loop counter bitwidth"))
static OptimizationRemarkAnalysis createHWLoopAnalysis(StringRef RemarkName, Loop *L, Instruction *I)
static cl::opt< bool > ForceGuardLoopEntry("force-hardware-loop-guard", cl::Hidden, cl::init(false), cl::desc("Force generation of loop guard intrinsic"))
static void debugHWLoopFailure(const StringRef DebugMsg, Instruction *I)
static cl::opt< unsigned > LoopDecrement("hardware-loop-decrement", cl::Hidden, cl::init(1), cl::desc("Set the loop decrement value"))
static cl::opt< bool > ForceHardwareLoops("force-hardware-loops", cl::Hidden, cl::init(false), cl::desc("Force hardware loops intrinsics to be inserted"))
static bool CanGenerateTest(Loop *L, Value *Count)
static cl::opt< bool > ForceHardwareLoopPHI("force-hardware-loop-phi", cl::Hidden, cl::init(false), cl::desc("Force hardware loop counter to be updated through a phi"))
Defines an IR pass for the creation of hardware loops.
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
Machine Check Debug Module
MachineInstr unsigned OpIdx
#define INITIALIZE_PASS_DEPENDENCY(depName)
#define INITIALIZE_PASS_END(passName, arg, name, cfg, analysis)
#define INITIALIZE_PASS_BEGIN(passName, arg, name, cfg, analysis)
This file defines the 'Statistic' class, which is designed to be an easy way to expose various metric...
#define STATISTIC(VARNAME, DESC)
PassT::Result & getResult(IRUnitT &IR, ExtraArgTs... ExtraArgs)
Get the result of an analysis pass for a given IR unit.
AnalysisUsage & addRequired()
AnalysisUsage & addPreserved()
Add the specified Pass class to the set of analyses preserved by this pass.
A function analysis which provides an AssumptionCache.
LLVM Basic Block Representation.
const Function * getParent() const
Return the enclosing method, or null if none.
LLVM_ABI const BasicBlock * getSinglePredecessor() const
Return the predecessor of this block if it has a single predecessor block.
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
void setCondition(Value *V)
LLVM_ABI void swapSuccessors()
Swap the successors of this branch instruction.
BasicBlock * getSuccessor(unsigned i) const
Value * getCondition() const
Analysis pass which computes BranchProbabilityInfo.
Predicate getPredicate() const
Return the predicate for this instruction.
Analysis pass which computes a DominatorTree.
FunctionPass class - This class is used to implement most global optimizations.
AttributeList getAttributes() const
Return the attribute list for this Function.
PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM)
This instruction compares its operands according to the predicate given to the constructor.
static LLVM_ABI IntegerType * get(LLVMContext &C, unsigned NumBits)
This static method is the primary way of constructing an IntegerType.
This is an important class for using LLVM in a threaded context.
Analysis pass that exposes the LoopInfo for a function.
Represents a single loop in the control flow graph.
static LLVM_ABI PassRegistry * getPassRegistry()
getPassRegistry - Access the global registry object, which is automatically initialized at applicatio...
A set of analyses that are preserved following a run of a transformation pass.
static PreservedAnalyses all()
Construct a special preserved set that preserves all passes.
PreservedAnalyses & preserve()
Mark an analysis as preserved.
LLVM_ABI Type * getType() const
Return the LLVM type of this SCEV expression.
Analysis pass that exposes the ScalarEvolution for a function.
LLVM_ABI bool isLoopEntryGuardedByCond(const Loop *L, CmpPredicate Pred, const SCEV *LHS, const SCEV *RHS)
Test whether entry to the loop is protected by a conditional between LHS and RHS.
const SCEV * getZero(Type *Ty)
Return a SCEV for the constant 0 of a specific type.
const SCEV * getOne(Type *Ty)
Return a SCEV for the constant 1 of a specific type.
LLVM_ABI const SCEV * getZeroExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth=0)
LLVM_ABI const SCEV * getAddExpr(SmallVectorImpl< const SCEV * > &Ops, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap, unsigned Depth=0)
Get a canonical add expression, or something simpler if possible.
StringRef - Represent a constant reference to a string, i.e.
Analysis pass providing the TargetTransformInfo.
Analysis pass providing the TargetLibraryInfo.
bool isPointerTy() const
True if this is an instance of PointerType.
void setOperand(unsigned i, Value *Val)
Value * getOperand(unsigned i) const
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
int getNumOccurrences() const
const ParentTy * getParent() const
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
@ BasicBlock
Various leaf nodes.
initializer< Ty > init(const Ty &Val)
PointerTypeMap run(const Module &M)
Compute the PointerTypeMap for the module M.
friend class Instruction
Iterator for Instructions in a `BasicBlock.
This is an optimization pass for GlobalISel generic memory operations.
FunctionAddr VTableAddr Value
LLVM_ABI BasicBlock * InsertPreheaderForLoop(Loop *L, DominatorTree *DT, LoopInfo *LI, MemorySSAUpdater *MSSAU, bool PreserveLCSSA)
InsertPreheaderForLoop - Once we discover that a loop doesn't have a preheader, this method is called...
LLVM_ABI bool RecursivelyDeleteTriviallyDeadInstructions(Value *V, const TargetLibraryInfo *TLI=nullptr, MemorySSAUpdater *MSSAU=nullptr, std::function< void(Value *)> AboutToDeleteCallback=std::function< void(Value *)>())
If the specified value is a trivially dead instruction, delete it.
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
LLVM_ABI bool DeleteDeadPHIs(BasicBlock *BB, const TargetLibraryInfo *TLI=nullptr, MemorySSAUpdater *MSSAU=nullptr)
Examine each PHI in the given block and delete it if it is dead.
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
FunctionAddr VTableAddr Count
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
LLVM_ABI void initializeHardwareLoopsLegacyPass(PassRegistry &)
IRBuilder(LLVMContext &, FolderTy, InserterTy, MDNode *, ArrayRef< OperandBundleDef >) -> IRBuilder< FolderTy, InserterTy >
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
AnalysisManager< Function > FunctionAnalysisManager
Convenience typedef for the Function analysis manager.
LLVM_ABI FunctionPass * createHardwareLoopsLegacyPass()
Create Hardware Loop pass.
LLVM_ABI bool isHardwareLoopCandidate(ScalarEvolution &SE, LoopInfo &LI, DominatorTree &DT, bool ForceNestedLoop=false, bool ForceHardwareLoopPHI=false)
std::optional< bool > Force
HardwareLoopOptions & setForceNested(bool Force)
std::optional< bool > ForceGuard
std::optional< unsigned > Decrement
HardwareLoopOptions & setDecrement(unsigned Count)
HardwareLoopOptions & setForceGuard(bool Force)
HardwareLoopOptions & setForce(bool Force)
HardwareLoopOptions & setCounterBitwidth(unsigned Width)
std::optional< unsigned > Bitwidth
HardwareLoopOptions & setForcePhi(bool Force)
std::optional< bool > ForcePhi
std::optional< bool > ForceNested
bool getForceNested() const