LLVM 22.0.0git
LiveRangeEdit.cpp
Go to the documentation of this file.
1//===-- LiveRangeEdit.cpp - Basic tools for editing a register live range -===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// The LiveRangeEdit class represents changes done to a virtual register when it
10// is spilled or split.
11//===----------------------------------------------------------------------===//
12
14#include "llvm/ADT/Statistic.h"
20#include "llvm/Support/Debug.h"
22
23using namespace llvm;
24
25#define DEBUG_TYPE "regalloc"
26
27STATISTIC(NumDCEDeleted, "Number of instructions deleted by DCE");
28STATISTIC(NumDCEFoldedLoads, "Number of single use loads folded after DCE");
29STATISTIC(NumFracRanges, "Number of live ranges fractured by DCE");
30STATISTIC(NumReMaterialization, "Number of instructions rematerialized");
31
32void LiveRangeEdit::Delegate::anchor() { }
33
34LiveInterval &LiveRangeEdit::createEmptyIntervalFrom(Register OldReg,
35 bool createSubRanges) {
36 Register VReg = MRI.cloneVirtualRegister(OldReg);
37 if (VRM)
38 VRM->setIsSplitFromReg(VReg, VRM->getOriginal(OldReg));
39
40 LiveInterval &LI = LIS.createEmptyInterval(VReg);
41 if (Parent && !Parent->isSpillable())
43 if (createSubRanges) {
44 // Create empty subranges if the OldReg's interval has them. Do not create
45 // the main range here---it will be constructed later after the subranges
46 // have been finalized.
47 LiveInterval &OldLI = LIS.getInterval(OldReg);
48 VNInfo::Allocator &Alloc = LIS.getVNInfoAllocator();
49 for (LiveInterval::SubRange &S : OldLI.subranges())
50 LI.createSubRange(Alloc, S.LaneMask);
51 }
52 return LI;
53}
54
56 Register VReg = MRI.cloneVirtualRegister(OldReg);
57 if (VRM) {
58 VRM->setIsSplitFromReg(VReg, VRM->getOriginal(OldReg));
59 }
60 // FIXME: Getting the interval here actually computes it.
61 // In theory, this may not be what we want, but in practice
62 // the createEmptyIntervalFrom API is used when this is not
63 // the case. Generally speaking we just want to annotate the
64 // LiveInterval when it gets created but we cannot do that at
65 // the moment.
66 if (Parent && !Parent->isSpillable())
67 LIS.getInterval(VReg).markNotSpillable();
68 return VReg;
69}
70
72 const MachineInstr *DefMI) {
73 assert(DefMI && "Missing instruction");
74 ScannedRemattable = true;
75 if (!TII.isTriviallyReMaterializable(*DefMI))
76 return false;
77 Remattable.insert(VNI);
78 return true;
79}
80
81void LiveRangeEdit::scanRemattable() {
82 for (VNInfo *VNI : getParent().valnos) {
83 if (VNI->isUnused())
84 continue;
85 Register Original = VRM->getOriginal(getReg());
86 LiveInterval &OrigLI = LIS.getInterval(Original);
87 VNInfo *OrigVNI = OrigLI.getVNInfoAt(VNI->def);
88 if (!OrigVNI)
89 continue;
91 if (!DefMI)
92 continue;
94 }
95 ScannedRemattable = true;
96}
97
99 if (!ScannedRemattable)
100 scanRemattable();
101 return !Remattable.empty();
102}
103
104/// allUsesAvailableAt - Return true if all registers used by OrigMI at
105/// OrigIdx are also available with the same value at UseIdx.
107 SlotIndex OrigIdx,
108 SlotIndex UseIdx) const {
109 OrigIdx = OrigIdx.getRegSlot(true);
110 UseIdx = std::max(UseIdx, UseIdx.getRegSlot(true));
111 for (const MachineOperand &MO : OrigMI->operands()) {
112 if (!MO.isReg() || !MO.getReg() || !MO.readsReg())
113 continue;
114
115 // We can't remat physreg uses, unless it is a constant or target wants
116 // to ignore this use.
117 if (MO.getReg().isPhysical()) {
118 if (MRI.isConstantPhysReg(MO.getReg()) || TII.isIgnorableUse(MO))
119 continue;
120 return false;
121 }
122
123 LiveInterval &li = LIS.getInterval(MO.getReg());
124 const VNInfo *OVNI = li.getVNInfoAt(OrigIdx);
125 if (!OVNI)
126 continue;
127
128 // Don't allow rematerialization immediately after the original def.
129 // It would be incorrect if OrigMI redefines the register.
130 // See PR14098.
131 if (SlotIndex::isSameInstr(OrigIdx, UseIdx))
132 return false;
133
134 if (OVNI != li.getVNInfoAt(UseIdx))
135 return false;
136
137 // Check that subrange is live at UseIdx.
138 if (li.hasSubRanges()) {
139 const TargetRegisterInfo *TRI = MRI.getTargetRegisterInfo();
140 unsigned SubReg = MO.getSubReg();
141 LaneBitmask LM = SubReg ? TRI->getSubRegIndexLaneMask(SubReg)
142 : MRI.getMaxLaneMaskForVReg(MO.getReg());
143 for (LiveInterval::SubRange &SR : li.subranges()) {
144 if ((SR.LaneMask & LM).none())
145 continue;
146 if (!SR.liveAt(UseIdx))
147 return false;
148 // Early exit if all used lanes are checked. No need to continue.
149 LM &= ~SR.LaneMask;
150 if (LM.none())
151 break;
152 }
153 }
154 }
155 return true;
156}
157
159 SlotIndex UseIdx) {
160 assert(ScannedRemattable && "Call anyRematerializable first");
161
162 // Use scanRemattable info.
163 if (!Remattable.count(OrigVNI))
164 return false;
165
166 // No defining instruction provided.
167 SlotIndex DefIdx;
168 assert(RM.OrigMI && "No defining instruction for remattable value");
169 DefIdx = LIS.getInstructionIndex(*RM.OrigMI);
170
171 // Verify that all used registers are available with the same values.
172 if (!allUsesAvailableAt(RM.OrigMI, DefIdx, UseIdx))
173 return false;
174
175 return true;
176}
177
180 Register DestReg, const Remat &RM,
181 const TargetRegisterInfo &tri,
182 bool Late, unsigned SubIdx,
183 MachineInstr *ReplaceIndexMI) {
184 assert(RM.OrigMI && "Invalid remat");
185 TII.reMaterialize(MBB, MI, DestReg, SubIdx, *RM.OrigMI, tri);
186 // DestReg of the cloned instruction cannot be Dead. Set isDead of DestReg
187 // to false anyway in case the isDead flag of RM.OrigMI's dest register
188 // is true.
189 (*--MI).clearRegisterDeads(DestReg);
190 Rematted.insert(RM.ParentVNI);
191 ++NumReMaterialization;
192
193 bool EarlyClobber = MI->getOperand(0).isEarlyClobber();
194 if (ReplaceIndexMI)
195 return LIS.ReplaceMachineInstrInMaps(*ReplaceIndexMI, *MI)
196 .getRegSlot(EarlyClobber);
197 return LIS.getSlotIndexes()->insertMachineInstrInMaps(*MI, Late).getRegSlot(
198 EarlyClobber);
199}
200
202 if (TheDelegate && TheDelegate->LRE_CanEraseVirtReg(Reg))
203 LIS.removeInterval(Reg);
204}
205
206bool LiveRangeEdit::foldAsLoad(LiveInterval *LI,
208 MachineInstr *DefMI = nullptr, *UseMI = nullptr;
209
210 // Check that there is a single def and a single use.
211 for (MachineOperand &MO : MRI.reg_nodbg_operands(LI->reg())) {
212 MachineInstr *MI = MO.getParent();
213 if (MO.isDef()) {
214 if (DefMI && DefMI != MI)
215 return false;
216 if (!MI->canFoldAsLoad())
217 return false;
218 DefMI = MI;
219 } else if (!MO.isUndef()) {
220 if (UseMI && UseMI != MI)
221 return false;
222 // FIXME: Targets don't know how to fold subreg uses.
223 if (MO.getSubReg())
224 return false;
225 UseMI = MI;
226 }
227 }
228 if (!DefMI || !UseMI)
229 return false;
230
231 // Since we're moving the DefMI load, make sure we're not extending any live
232 // ranges.
233 if (!allUsesAvailableAt(DefMI, LIS.getInstructionIndex(*DefMI),
234 LIS.getInstructionIndex(*UseMI)))
235 return false;
236
237 // We also need to make sure it is safe to move the load.
238 // Assume there are stores between DefMI and UseMI.
239 bool SawStore = true;
240 if (!DefMI->isSafeToMove(SawStore))
241 return false;
242
243 LLVM_DEBUG(dbgs() << "Try to fold single def: " << *DefMI
244 << " into single use: " << *UseMI);
245
246 SmallVector<unsigned, 8> Ops;
247 if (UseMI->readsWritesVirtualRegister(LI->reg(), &Ops).second)
248 return false;
249
250 MachineInstr *FoldMI = TII.foldMemoryOperand(*UseMI, Ops, *DefMI, &LIS);
251 if (!FoldMI)
252 return false;
253 LLVM_DEBUG(dbgs() << " folded: " << *FoldMI);
254 LIS.ReplaceMachineInstrInMaps(*UseMI, *FoldMI);
255 // Update the call info.
259 DefMI->addRegisterDead(LI->reg(), nullptr);
260 Dead.push_back(DefMI);
261 ++NumDCEFoldedLoads;
262 return true;
263}
264
265bool LiveRangeEdit::useIsKill(const LiveInterval &LI,
266 const MachineOperand &MO) const {
267 const MachineInstr &MI = *MO.getParent();
268 SlotIndex Idx = LIS.getInstructionIndex(MI).getRegSlot();
269 if (LI.Query(Idx).isKill())
270 return true;
271 const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo();
272 unsigned SubReg = MO.getSubReg();
273 LaneBitmask LaneMask = TRI.getSubRegIndexLaneMask(SubReg);
274 for (const LiveInterval::SubRange &S : LI.subranges()) {
275 if ((S.LaneMask & LaneMask).any() && S.Query(Idx).isKill())
276 return true;
277 }
278 return false;
279}
280
281/// Find all live intervals that need to shrink, then remove the instruction.
282void LiveRangeEdit::eliminateDeadDef(MachineInstr *MI, ToShrinkSet &ToShrink) {
283 assert(MI->allDefsAreDead() && "Def isn't really dead");
284 SlotIndex Idx = LIS.getInstructionIndex(*MI).getRegSlot();
285
286 // Never delete a bundled instruction.
287 if (MI->isBundled()) {
288 // TODO: Handle deleting copy bundles
289 LLVM_DEBUG(dbgs() << "Won't delete dead bundled inst: " << Idx << '\t'
290 << *MI);
291 return;
292 }
293
294 // Never delete inline asm.
295 if (MI->isInlineAsm()) {
296 LLVM_DEBUG(dbgs() << "Won't delete: " << Idx << '\t' << *MI);
297 return;
298 }
299
300 // Use the same criteria as DeadMachineInstructionElim.
301 bool SawStore = false;
302 if (!MI->isSafeToMove(SawStore)) {
303 LLVM_DEBUG(dbgs() << "Can't delete: " << Idx << '\t' << *MI);
304 return;
305 }
306
307 LLVM_DEBUG(dbgs() << "Deleting dead def " << Idx << '\t' << *MI);
308
309 // Collect virtual registers to be erased after MI is gone.
310 SmallVector<Register, 8> RegsToErase;
311 bool ReadsPhysRegs = false;
312 bool isOrigDef = false;
313 Register Dest;
314 unsigned DestSubReg;
315 // Only optimize rematerialize case when the instruction has one def, since
316 // otherwise we could leave some dead defs in the code. This case is
317 // extremely rare.
318 if (VRM && MI->getOperand(0).isReg() && MI->getOperand(0).isDef() &&
319 MI->getDesc().getNumDefs() == 1) {
320 Dest = MI->getOperand(0).getReg();
321 DestSubReg = MI->getOperand(0).getSubReg();
322 Register Original = VRM->getOriginal(Dest);
323 LiveInterval &OrigLI = LIS.getInterval(Original);
324 VNInfo *OrigVNI = OrigLI.getVNInfoAt(Idx);
325 // The original live-range may have been shrunk to
326 // an empty live-range. It happens when it is dead, but
327 // we still keep it around to be able to rematerialize
328 // other values that depend on it.
329 if (OrigVNI)
330 isOrigDef = SlotIndex::isSameInstr(OrigVNI->def, Idx);
331 }
332
333 bool HasLiveVRegUses = false;
334
335 // Check for live intervals that may shrink
336 for (const MachineOperand &MO : MI->operands()) {
337 if (!MO.isReg())
338 continue;
339 Register Reg = MO.getReg();
340 if (!Reg.isVirtual()) {
341 // Check if MI reads any unreserved physregs.
342 if (Reg && MO.readsReg() && !MRI.isReserved(Reg))
343 ReadsPhysRegs = true;
344 else if (MO.isDef())
345 LIS.removePhysRegDefAt(Reg.asMCReg(), Idx);
346 continue;
347 }
348 LiveInterval &LI = LIS.getInterval(Reg);
349
350 // Shrink read registers, unless it is likely to be expensive and
351 // unlikely to change anything. We typically don't want to shrink the
352 // PIC base register that has lots of uses everywhere.
353 // Always shrink COPY uses that probably come from live range splitting.
354 if ((MI->readsVirtualRegister(Reg) &&
355 (MO.isDef() || TII.isCopyInstr(*MI))) ||
356 (MO.readsReg() && (MRI.hasOneNonDBGUse(Reg) || useIsKill(LI, MO))))
357 ToShrink.insert(&LI);
358 else if (MO.readsReg())
359 HasLiveVRegUses = true;
360
361 // Remove defined value.
362 if (MO.isDef()) {
363 if (TheDelegate && LI.getVNInfoAt(Idx) != nullptr)
364 TheDelegate->LRE_WillShrinkVirtReg(LI.reg());
365 LIS.removeVRegDefAt(LI, Idx);
366 if (LI.empty())
367 RegsToErase.push_back(Reg);
368 }
369 }
370
371 // Currently, we don't support DCE of physreg live ranges. If MI reads
372 // any unreserved physregs, don't erase the instruction, but turn it into
373 // a KILL instead. This way, the physreg live ranges don't end up
374 // dangling.
375 // FIXME: It would be better to have something like shrinkToUses() for
376 // physregs. That could potentially enable more DCE and it would free up
377 // the physreg. It would not happen often, though.
378 if (ReadsPhysRegs) {
379 MI->setDesc(TII.get(TargetOpcode::KILL));
380 // Remove all operands that aren't physregs.
381 for (unsigned i = MI->getNumOperands(); i; --i) {
382 const MachineOperand &MO = MI->getOperand(i-1);
383 if (MO.isReg() && MO.getReg().isPhysical())
384 continue;
385 MI->removeOperand(i-1);
386 }
387 MI->dropMemRefs(*MI->getMF());
388 LLVM_DEBUG(dbgs() << "Converted physregs to:\t" << *MI);
389 } else {
390 // If the dest of MI is an original reg and MI is reMaterializable,
391 // don't delete the inst. Replace the dest with a new reg, and keep
392 // the inst for remat of other siblings. The inst is saved in
393 // LiveRangeEdit::DeadRemats and will be deleted after all the
394 // allocations of the func are done.
395 // However, immediately delete instructions which have unshrunk virtual
396 // register uses. That may provoke RA to split an interval at the KILL
397 // and later result in an invalid live segment end.
398 if (isOrigDef && DeadRemats && !HasLiveVRegUses &&
399 TII.isTriviallyReMaterializable(*MI)) {
400 LiveInterval &NewLI = createEmptyIntervalFrom(Dest, false);
401 VNInfo::Allocator &Alloc = LIS.getVNInfoAllocator();
402 VNInfo *VNI = NewLI.getNextValue(Idx, Alloc);
403 NewLI.addSegment(LiveInterval::Segment(Idx, Idx.getDeadSlot(), VNI));
404
405 if (DestSubReg) {
406 const TargetRegisterInfo *TRI = MRI.getTargetRegisterInfo();
407 auto *SR = NewLI.createSubRange(
408 Alloc, TRI->getSubRegIndexLaneMask(DestSubReg));
409 SR->addSegment(LiveInterval::Segment(Idx, Idx.getDeadSlot(),
410 SR->getNextValue(Idx, Alloc)));
411 }
412
413 pop_back();
414 DeadRemats->insert(MI);
415 const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo();
416 MI->substituteRegister(Dest, NewLI.reg(), 0, TRI);
417 assert(MI->registerDefIsDead(NewLI.reg(), &TRI));
418 } else {
419 if (TheDelegate)
420 TheDelegate->LRE_WillEraseInstruction(MI);
421 LIS.RemoveMachineInstrFromMaps(*MI);
422 MI->eraseFromParent();
423 ++NumDCEDeleted;
424 }
425 }
426
427 // Erase any virtregs that are now empty and unused. There may be <undef>
428 // uses around. Keep the empty live range in that case.
429 for (Register Reg : RegsToErase) {
430 if (LIS.hasInterval(Reg) && MRI.reg_nodbg_empty(Reg)) {
431 ToShrink.remove(&LIS.getInterval(Reg));
433 }
434 }
435}
436
438 ArrayRef<Register> RegsBeingSpilled) {
439 ToShrinkSet ToShrink;
440
441 for (;;) {
442 // Erase all dead defs.
443 while (!Dead.empty())
444 eliminateDeadDef(Dead.pop_back_val(), ToShrink);
445
446 if (ToShrink.empty())
447 break;
448
449 // Shrink just one live interval. Then delete new dead defs.
450 LiveInterval *LI = ToShrink.pop_back_val();
451 if (foldAsLoad(LI, Dead))
452 continue;
453 Register VReg = LI->reg();
454 if (TheDelegate)
455 TheDelegate->LRE_WillShrinkVirtReg(VReg);
456 if (!LIS.shrinkToUses(LI, &Dead))
457 continue;
458
459 // Don't create new intervals for a register being spilled.
460 // The new intervals would have to be spilled anyway so its not worth it.
461 // Also they currently aren't spilled so creating them and not spilling
462 // them results in incorrect code.
463 if (llvm::is_contained(RegsBeingSpilled, VReg))
464 continue;
465
466 // LI may have been separated, create new intervals.
467 LI->RenumberValues();
469 LIS.splitSeparateComponents(*LI, SplitLIs);
470 if (!SplitLIs.empty())
471 ++NumFracRanges;
472
473 Register Original = VRM ? VRM->getOriginal(VReg) : Register();
474 for (const LiveInterval *SplitLI : SplitLIs) {
475 // If LI is an original interval that hasn't been split yet, make the new
476 // intervals their own originals instead of referring to LI. The original
477 // interval must contain all the split products, and LI doesn't.
478 if (Original != VReg && Original != 0)
479 VRM->setIsSplitFromReg(SplitLI->reg(), Original);
480 if (TheDelegate)
481 TheDelegate->LRE_DidCloneVirtReg(SplitLI->reg(), VReg);
482 }
483 }
484}
485
486// Keep track of new virtual registers created via
487// MachineRegisterInfo::createVirtualRegister.
488void
489LiveRangeEdit::MRI_NoteNewVirtualRegister(Register VReg) {
490 if (VRM)
491 VRM->grow();
492
493 NewRegs.push_back(VReg);
494}
495
497 VirtRegAuxInfo &VRAI) {
498 for (unsigned I = 0, Size = size(); I < Size; ++I) {
499 LiveInterval &LI = LIS.getInterval(get(I));
500 if (MRI.recomputeRegClass(LI.reg()))
501 LLVM_DEBUG({
503 dbgs() << "Inflated " << printReg(LI.reg()) << " to "
504 << TRI->getRegClassName(MRI.getRegClass(LI.reg())) << '\n';
505 });
507 }
508}
unsigned SubReg
unsigned const MachineRegisterInfo * MRI
MachineInstrBuilder & UseMI
MachineInstrBuilder MachineInstrBuilder & DefMI
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
MachineBasicBlock & MBB
IRTranslator LLVM IR MI
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
#define I(x, y, z)
Definition MD5.cpp:58
Register Reg
Register const TargetRegisterInfo * TRI
Promote Memory to Register
Definition Mem2Reg.cpp:110
This file defines the 'Statistic' class, which is designed to be an easy way to expose various metric...
#define STATISTIC(VARNAME, DESC)
Definition Statistic.h:167
#define LLVM_DEBUG(...)
Definition Debug.h:114
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition ArrayRef.h:41
A live range for subregisters.
LiveInterval - This class represents the liveness of a register, or stack slot.
void markNotSpillable()
markNotSpillable - Mark interval as not spillable
Register reg() const
bool hasSubRanges() const
Returns true if subregister liveness information is available.
iterator_range< subrange_iterator > subranges()
SubRange * createSubRange(BumpPtrAllocator &Allocator, LaneBitmask LaneMask)
Creates a new empty subregister live range.
MachineInstr * getInstructionFromIndex(SlotIndex index) const
Returns the instruction associated with the given index.
LiveInterval & getInterval(Register Reg)
bool isKill() const
Return true if the live-in value is killed by this instruction.
void eraseVirtReg(Register Reg)
eraseVirtReg - Notify the delegate that Reg is no longer in use, and try to erase it from LIS.
unsigned size() const
bool canRematerializeAt(Remat &RM, VNInfo *OrigVNI, SlotIndex UseIdx)
canRematerializeAt - Determine if ParentVNI can be rematerialized at UseIdx.
Register get(unsigned idx) const
Register createFrom(Register OldReg)
createFrom - Create a new virtual register based on OldReg.
void calculateRegClassAndHint(MachineFunction &, VirtRegAuxInfo &)
calculateRegClassAndHint - Recompute register class and hint for each new register.
const LiveInterval & getParent() const
Register getReg() const
SlotIndex rematerializeAt(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, Register DestReg, const Remat &RM, const TargetRegisterInfo &, bool Late=false, unsigned SubIdx=0, MachineInstr *ReplaceIndexMI=nullptr)
rematerializeAt - Rematerialize RM.ParentVNI into DestReg by inserting an instruction into MBB before...
bool allUsesAvailableAt(const MachineInstr *OrigMI, SlotIndex OrigIdx, SlotIndex UseIdx) const
allUsesAvailableAt - Return true if all registers used by OrigMI at OrigIdx are also available with t...
void eliminateDeadDefs(SmallVectorImpl< MachineInstr * > &Dead, ArrayRef< Register > RegsBeingSpilled={})
eliminateDeadDefs - Try to delete machine instructions that are now dead (allDefsAreDead returns true...
void pop_back()
pop_back - It allows LiveRangeEdit users to drop new registers.
bool checkRematerializable(VNInfo *VNI, const MachineInstr *DefMI)
checkRematerializable - Manually add VNI to the list of rematerializable values if DefMI may be remat...
bool anyRematerializable()
anyRematerializable - Return true if any parent values may be rematerializable.
LLVM_ABI iterator addSegment(Segment S)
Add the specified Segment to this range, merging segments as appropriate.
bool empty() const
LLVM_ABI void RenumberValues()
RenumberValues - Renumber all values in order of appearance and remove unused values.
LiveQueryResult Query(SlotIndex Idx) const
Query Liveness at Idx.
VNInfo * getNextValue(SlotIndex Def, VNInfo::Allocator &VNInfoAllocator)
getNextValue - Create a new value number and return it.
VNInfo * getVNInfoAt(SlotIndex Idx) const
getVNInfoAt - Return the VNInfo that is live at Idx, or NULL.
MachineInstrBundleIterator< MachineInstr > iterator
void moveAdditionalCallInfo(const MachineInstr *Old, const MachineInstr *New)
Move the call site info from Old to \New call site info.
const TargetSubtargetInfo & getSubtarget() const
getSubtarget - Return the subtarget for which this machine code is being compiled.
Representation of each machine instruction.
LLVM_ABI std::pair< bool, bool > readsWritesVirtualRegister(Register Reg, SmallVectorImpl< unsigned > *Ops=nullptr) const
Return a pair of bools (reads, writes) indicating if this instruction reads or writes Reg.
LLVM_ABI bool isSafeToMove(bool &SawStore) const
Return true if it is safe to move this instruction.
mop_range operands()
LLVM_ABI const MachineFunction * getMF() const
Return the function that contains the basic block that this instruction belongs to.
LLVM_ABI void eraseFromParent()
Unlink 'this' from the containing basic block and delete it.
LLVM_ABI bool shouldUpdateAdditionalCallInfo() const
Return true if copying, moving, or erasing this instruction requires updating additional call info (s...
LLVM_ABI bool addRegisterDead(Register Reg, const TargetRegisterInfo *RegInfo, bool AddIfNotFound=false)
We have determined MI defined a register without a use.
MachineOperand class - Representation of each machine instruction operand.
unsigned getSubReg() const
bool readsReg() const
readsReg - Returns true if this operand reads the previous value of its register.
bool isReg() const
isReg - Tests if this is a MO_Register operand.
MachineInstr * getParent()
getParent - Return the instruction that this operand belongs to.
Register getReg() const
getReg - Returns the register number.
Wrapper class representing virtual and physical registers.
Definition Register.h:19
MCRegister asMCReg() const
Utility to check-convert this value to a MCRegister.
Definition Register.h:102
constexpr bool isVirtual() const
Return true if the specified register number is in the virtual register namespace.
Definition Register.h:74
constexpr bool isPhysical() const
Return true if the specified register number is in the physical register namespace.
Definition Register.h:78
bool empty() const
Determine if the SetVector is empty or not.
Definition SetVector.h:99
value_type pop_back_val()
Definition SetVector.h:296
SlotIndex - An opaque wrapper around machine indexes.
Definition SlotIndexes.h:66
static bool isSameInstr(SlotIndex A, SlotIndex B)
isSameInstr - Return true if A and B refer to the same instruction.
SlotIndex getDeadSlot() const
Returns the dead def kill slot for the current instruction.
SlotIndex getRegSlot(bool EC=false) const
Returns the register use/def slot in the current instruction for a normal or early-clobber def.
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
TargetRegisterInfo base class - We assume that the target defines a static array of TargetRegisterDes...
virtual const TargetRegisterInfo * getRegisterInfo() const =0
Return the target's register information.
VNInfo - Value Number Information.
BumpPtrAllocator Allocator
SlotIndex def
The index of the defining instruction.
Calculate auxiliary information for a virtual register such as its spill weight and allocation hint.
void calculateSpillWeightAndHint(LiveInterval &LI)
(re)compute li's spill weight and allocation hint.
Register getOriginal(Register VirtReg) const
getOriginal - Return the original virtual register that VirtReg descends from through splitting.
Definition VirtRegMap.h:155
LLVM_ABI void grow()
@ Dead
Unused definition.
This is an optimization pass for GlobalISel generic memory operations.
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition Debug.cpp:207
class LLVM_GSL_OWNER SmallVector
Forward declaration of SmallVector so that calculateSmallVectorDefaultInlinedElements can reference s...
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
Definition STLExtras.h:1879
LLVM_ABI Printable printReg(Register Reg, const TargetRegisterInfo *TRI=nullptr, unsigned SubIdx=0, const MachineRegisterInfo *MRI=nullptr)
Prints virtual and physical registers with or without a TRI instance.
constexpr bool none() const
Definition LaneBitmask.h:52
Remat - Information needed to rematerialize at a specific location.