LLVM 22.0.0git
LoopUtils.cpp
Go to the documentation of this file.
1//===-- LoopUtils.cpp - Loop Utility functions -------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines common loop utility functions.
10//
11//===----------------------------------------------------------------------===//
12
14#include "llvm/ADT/DenseSet.h"
16#include "llvm/ADT/ScopeExit.h"
17#include "llvm/ADT/SetVector.h"
33#include "llvm/IR/DIBuilder.h"
34#include "llvm/IR/Dominators.h"
37#include "llvm/IR/MDBuilder.h"
38#include "llvm/IR/Module.h"
41#include "llvm/IR/ValueHandle.h"
43#include "llvm/Pass.h"
45#include "llvm/Support/Debug.h"
49
50using namespace llvm;
51using namespace llvm::PatternMatch;
52
53#define DEBUG_TYPE "loop-utils"
54
55static const char *LLVMLoopDisableNonforced = "llvm.loop.disable_nonforced";
56static const char *LLVMLoopDisableLICM = "llvm.licm.disable";
57
59 MemorySSAUpdater *MSSAU,
60 bool PreserveLCSSA) {
61 bool Changed = false;
62
63 // We re-use a vector for the in-loop predecesosrs.
64 SmallVector<BasicBlock *, 4> InLoopPredecessors;
65
66 auto RewriteExit = [&](BasicBlock *BB) {
67 assert(InLoopPredecessors.empty() &&
68 "Must start with an empty predecessors list!");
69 auto Cleanup = make_scope_exit([&] { InLoopPredecessors.clear(); });
70
71 // See if there are any non-loop predecessors of this exit block and
72 // keep track of the in-loop predecessors.
73 bool IsDedicatedExit = true;
74 for (auto *PredBB : predecessors(BB))
75 if (L->contains(PredBB)) {
76 if (isa<IndirectBrInst>(PredBB->getTerminator()))
77 // We cannot rewrite exiting edges from an indirectbr.
78 return false;
79
80 InLoopPredecessors.push_back(PredBB);
81 } else {
82 IsDedicatedExit = false;
83 }
84
85 assert(!InLoopPredecessors.empty() && "Must have *some* loop predecessor!");
86
87 // Nothing to do if this is already a dedicated exit.
88 if (IsDedicatedExit)
89 return false;
90
91 auto *NewExitBB = SplitBlockPredecessors(
92 BB, InLoopPredecessors, ".loopexit", DT, LI, MSSAU, PreserveLCSSA);
93
94 if (!NewExitBB)
96 dbgs() << "WARNING: Can't create a dedicated exit block for loop: "
97 << *L << "\n");
98 else
99 LLVM_DEBUG(dbgs() << "LoopSimplify: Creating dedicated exit block "
100 << NewExitBB->getName() << "\n");
101 return true;
102 };
103
104 // Walk the exit blocks directly rather than building up a data structure for
105 // them, but only visit each one once.
107 for (auto *BB : L->blocks())
108 for (auto *SuccBB : successors(BB)) {
109 // We're looking for exit blocks so skip in-loop successors.
110 if (L->contains(SuccBB))
111 continue;
112
113 // Visit each exit block exactly once.
114 if (!Visited.insert(SuccBB).second)
115 continue;
116
117 Changed |= RewriteExit(SuccBB);
118 }
119
120 return Changed;
121}
122
123/// Returns the instructions that use values defined in the loop.
126
127 for (auto *Block : L->getBlocks())
128 // FIXME: I believe that this could use copy_if if the Inst reference could
129 // be adapted into a pointer.
130 for (auto &Inst : *Block) {
131 auto Users = Inst.users();
132 if (any_of(Users, [&](User *U) {
133 auto *Use = cast<Instruction>(U);
134 return !L->contains(Use->getParent());
135 }))
136 UsedOutside.push_back(&Inst);
137 }
138
139 return UsedOutside;
140}
141
143 // By definition, all loop passes need the LoopInfo analysis and the
144 // Dominator tree it depends on. Because they all participate in the loop
145 // pass manager, they must also preserve these.
150
151 // We must also preserve LoopSimplify and LCSSA. We locally access their IDs
152 // here because users shouldn't directly get them from this header.
153 extern char &LoopSimplifyID;
154 extern char &LCSSAID;
159 // This is used in the LPPassManager to perform LCSSA verification on passes
160 // which preserve lcssa form
163
164 // Loop passes are designed to run inside of a loop pass manager which means
165 // that any function analyses they require must be required by the first loop
166 // pass in the manager (so that it is computed before the loop pass manager
167 // runs) and preserved by all loop pasess in the manager. To make this
168 // reasonably robust, the set needed for most loop passes is maintained here.
169 // If your loop pass requires an analysis not listed here, you will need to
170 // carefully audit the loop pass manager nesting structure that results.
178 // FIXME: When all loop passes preserve MemorySSA, it can be required and
179 // preserved here instead of the individual handling in each pass.
180}
181
182/// Manually defined generic "LoopPass" dependency initialization. This is used
183/// to initialize the exact set of passes from above in \c
184/// getLoopAnalysisUsage. It can be used within a loop pass's initialization
185/// with:
186///
187/// INITIALIZE_PASS_DEPENDENCY(LoopPass)
188///
189/// As-if "LoopPass" were a pass.
202
203/// Create MDNode for input string.
204static MDNode *createStringMetadata(Loop *TheLoop, StringRef Name, unsigned V) {
205 LLVMContext &Context = TheLoop->getHeader()->getContext();
206 Metadata *MDs[] = {
207 MDString::get(Context, Name),
208 ConstantAsMetadata::get(ConstantInt::get(Type::getInt32Ty(Context), V))};
209 return MDNode::get(Context, MDs);
210}
211
212/// Set input string into loop metadata by keeping other values intact.
213/// If the string is already in loop metadata update value if it is
214/// different.
215void llvm::addStringMetadataToLoop(Loop *TheLoop, const char *StringMD,
216 unsigned V) {
218 // If the loop already has metadata, retain it.
219 MDNode *LoopID = TheLoop->getLoopID();
220 if (LoopID) {
221 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
222 MDNode *Node = cast<MDNode>(LoopID->getOperand(i));
223 // If it is of form key = value, try to parse it.
224 if (Node->getNumOperands() == 2) {
225 MDString *S = dyn_cast<MDString>(Node->getOperand(0));
226 if (S && S->getString() == StringMD) {
227 ConstantInt *IntMD =
229 if (IntMD && IntMD->getSExtValue() == V)
230 // It is already in place. Do nothing.
231 return;
232 // We need to update the value, so just skip it here and it will
233 // be added after copying other existed nodes.
234 continue;
235 }
236 }
237 MDs.push_back(Node);
238 }
239 }
240 // Add new metadata.
241 MDs.push_back(createStringMetadata(TheLoop, StringMD, V));
242 // Replace current metadata node with new one.
243 LLVMContext &Context = TheLoop->getHeader()->getContext();
244 MDNode *NewLoopID = MDNode::get(Context, MDs);
245 // Set operand 0 to refer to the loop id itself.
246 NewLoopID->replaceOperandWith(0, NewLoopID);
247 TheLoop->setLoopID(NewLoopID);
248}
249
250std::optional<ElementCount>
252 std::optional<int> Width =
253 getOptionalIntLoopAttribute(TheLoop, "llvm.loop.vectorize.width");
254
255 if (Width) {
256 std::optional<int> IsScalable = getOptionalIntLoopAttribute(
257 TheLoop, "llvm.loop.vectorize.scalable.enable");
258 return ElementCount::get(*Width, IsScalable.value_or(false));
259 }
260
261 return std::nullopt;
262}
263
264std::optional<MDNode *> llvm::makeFollowupLoopID(
265 MDNode *OrigLoopID, ArrayRef<StringRef> FollowupOptions,
266 const char *InheritOptionsExceptPrefix, bool AlwaysNew) {
267 if (!OrigLoopID) {
268 if (AlwaysNew)
269 return nullptr;
270 return std::nullopt;
271 }
272
273 assert(OrigLoopID->getOperand(0) == OrigLoopID);
274
275 bool InheritAllAttrs = !InheritOptionsExceptPrefix;
276 bool InheritSomeAttrs =
277 InheritOptionsExceptPrefix && InheritOptionsExceptPrefix[0] != '\0';
279 MDs.push_back(nullptr);
280
281 bool Changed = false;
282 if (InheritAllAttrs || InheritSomeAttrs) {
283 for (const MDOperand &Existing : drop_begin(OrigLoopID->operands())) {
284 MDNode *Op = cast<MDNode>(Existing.get());
285
286 auto InheritThisAttribute = [InheritSomeAttrs,
287 InheritOptionsExceptPrefix](MDNode *Op) {
288 if (!InheritSomeAttrs)
289 return false;
290
291 // Skip malformatted attribute metadata nodes.
292 if (Op->getNumOperands() == 0)
293 return true;
294 Metadata *NameMD = Op->getOperand(0).get();
295 if (!isa<MDString>(NameMD))
296 return true;
297 StringRef AttrName = cast<MDString>(NameMD)->getString();
298
299 // Do not inherit excluded attributes.
300 return !AttrName.starts_with(InheritOptionsExceptPrefix);
301 };
302
303 if (InheritThisAttribute(Op))
304 MDs.push_back(Op);
305 else
306 Changed = true;
307 }
308 } else {
309 // Modified if we dropped at least one attribute.
310 Changed = OrigLoopID->getNumOperands() > 1;
311 }
312
313 bool HasAnyFollowup = false;
314 for (StringRef OptionName : FollowupOptions) {
315 MDNode *FollowupNode = findOptionMDForLoopID(OrigLoopID, OptionName);
316 if (!FollowupNode)
317 continue;
318
319 HasAnyFollowup = true;
320 for (const MDOperand &Option : drop_begin(FollowupNode->operands())) {
321 MDs.push_back(Option.get());
322 Changed = true;
323 }
324 }
325
326 // Attributes of the followup loop not specified explicity, so signal to the
327 // transformation pass to add suitable attributes.
328 if (!AlwaysNew && !HasAnyFollowup)
329 return std::nullopt;
330
331 // If no attributes were added or remove, the previous loop Id can be reused.
332 if (!AlwaysNew && !Changed)
333 return OrigLoopID;
334
335 // No attributes is equivalent to having no !llvm.loop metadata at all.
336 if (MDs.size() == 1)
337 return nullptr;
338
339 // Build the new loop ID.
340 MDTuple *FollowupLoopID = MDNode::get(OrigLoopID->getContext(), MDs);
341 FollowupLoopID->replaceOperandWith(0, FollowupLoopID);
342 return FollowupLoopID;
343}
344
348
352
354 if (getBooleanLoopAttribute(L, "llvm.loop.unroll.disable"))
355 return TM_SuppressedByUser;
356
357 std::optional<int> Count =
358 getOptionalIntLoopAttribute(L, "llvm.loop.unroll.count");
359 if (Count)
361
362 if (getBooleanLoopAttribute(L, "llvm.loop.unroll.enable"))
363 return TM_ForcedByUser;
364
365 if (getBooleanLoopAttribute(L, "llvm.loop.unroll.full"))
366 return TM_ForcedByUser;
367
369 return TM_Disable;
370
371 return TM_Unspecified;
372}
373
375 if (getBooleanLoopAttribute(L, "llvm.loop.unroll_and_jam.disable"))
376 return TM_SuppressedByUser;
377
378 std::optional<int> Count =
379 getOptionalIntLoopAttribute(L, "llvm.loop.unroll_and_jam.count");
380 if (Count)
382
383 if (getBooleanLoopAttribute(L, "llvm.loop.unroll_and_jam.enable"))
384 return TM_ForcedByUser;
385
387 return TM_Disable;
388
389 return TM_Unspecified;
390}
391
393 std::optional<bool> Enable =
394 getOptionalBoolLoopAttribute(L, "llvm.loop.vectorize.enable");
395
396 if (Enable == false)
397 return TM_SuppressedByUser;
398
399 std::optional<ElementCount> VectorizeWidth =
401 std::optional<int> InterleaveCount =
402 getOptionalIntLoopAttribute(L, "llvm.loop.interleave.count");
403
404 // 'Forcing' vector width and interleave count to one effectively disables
405 // this tranformation.
406 if (Enable == true && VectorizeWidth && VectorizeWidth->isScalar() &&
407 InterleaveCount == 1)
408 return TM_SuppressedByUser;
409
410 if (getBooleanLoopAttribute(L, "llvm.loop.isvectorized"))
411 return TM_Disable;
412
413 if (Enable == true)
414 return TM_ForcedByUser;
415
416 if ((VectorizeWidth && VectorizeWidth->isScalar()) && InterleaveCount == 1)
417 return TM_Disable;
418
419 if ((VectorizeWidth && VectorizeWidth->isVector()) || InterleaveCount > 1)
420 return TM_Enable;
421
423 return TM_Disable;
424
425 return TM_Unspecified;
426}
427
429 if (getBooleanLoopAttribute(L, "llvm.loop.distribute.enable"))
430 return TM_ForcedByUser;
431
433 return TM_Disable;
434
435 return TM_Unspecified;
436}
437
439 if (getBooleanLoopAttribute(L, "llvm.loop.licm_versioning.disable"))
440 return TM_SuppressedByUser;
441
443 return TM_Disable;
444
445 return TM_Unspecified;
446}
447
448/// Does a BFS from a given node to all of its children inside a given loop.
449/// The returned vector of basic blocks includes the starting point.
451 DomTreeNode *N,
452 const Loop *CurLoop) {
454 auto AddRegionToWorklist = [&](DomTreeNode *DTN) {
455 // Only include subregions in the top level loop.
456 BasicBlock *BB = DTN->getBlock();
457 if (CurLoop->contains(BB))
458 Worklist.push_back(DTN->getBlock());
459 };
460
461 AddRegionToWorklist(N);
462
463 for (size_t I = 0; I < Worklist.size(); I++) {
464 for (DomTreeNode *Child : DT->getNode(Worklist[I])->children())
465 AddRegionToWorklist(Child);
466 }
467
468 return Worklist;
469}
470
472 int LatchIdx = PN->getBasicBlockIndex(LatchBlock);
473 assert(LatchIdx != -1 && "LatchBlock is not a case in this PHINode");
474 Value *IncV = PN->getIncomingValue(LatchIdx);
475
476 for (User *U : PN->users())
477 if (U != Cond && U != IncV) return false;
478
479 for (User *U : IncV->users())
480 if (U != Cond && U != PN) return false;
481 return true;
482}
483
484
486 LoopInfo *LI, MemorySSA *MSSA) {
487 assert((!DT || L->isLCSSAForm(*DT)) && "Expected LCSSA!");
488 auto *Preheader = L->getLoopPreheader();
489 assert(Preheader && "Preheader should exist!");
490
491 std::unique_ptr<MemorySSAUpdater> MSSAU;
492 if (MSSA)
493 MSSAU = std::make_unique<MemorySSAUpdater>(MSSA);
494
495 // Now that we know the removal is safe, remove the loop by changing the
496 // branch from the preheader to go to the single exit block.
497 //
498 // Because we're deleting a large chunk of code at once, the sequence in which
499 // we remove things is very important to avoid invalidation issues.
500
501 // Tell ScalarEvolution that the loop is deleted. Do this before
502 // deleting the loop so that ScalarEvolution can look at the loop
503 // to determine what it needs to clean up.
504 if (SE) {
505 SE->forgetLoop(L);
507 }
508
509 Instruction *OldTerm = Preheader->getTerminator();
510 assert(!OldTerm->mayHaveSideEffects() &&
511 "Preheader must end with a side-effect-free terminator");
512 assert(OldTerm->getNumSuccessors() == 1 &&
513 "Preheader must have a single successor");
514 // Connect the preheader to the exit block. Keep the old edge to the header
515 // around to perform the dominator tree update in two separate steps
516 // -- #1 insertion of the edge preheader -> exit and #2 deletion of the edge
517 // preheader -> header.
518 //
519 //
520 // 0. Preheader 1. Preheader 2. Preheader
521 // | | | |
522 // V | V |
523 // Header <--\ | Header <--\ | Header <--\
524 // | | | | | | | | | | |
525 // | V | | | V | | | V |
526 // | Body --/ | | Body --/ | | Body --/
527 // V V V V V
528 // Exit Exit Exit
529 //
530 // By doing this is two separate steps we can perform the dominator tree
531 // update without using the batch update API.
532 //
533 // Even when the loop is never executed, we cannot remove the edge from the
534 // source block to the exit block. Consider the case where the unexecuted loop
535 // branches back to an outer loop. If we deleted the loop and removed the edge
536 // coming to this inner loop, this will break the outer loop structure (by
537 // deleting the backedge of the outer loop). If the outer loop is indeed a
538 // non-loop, it will be deleted in a future iteration of loop deletion pass.
539 IRBuilder<> Builder(OldTerm);
540
541 auto *ExitBlock = L->getUniqueExitBlock();
542 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
543 if (ExitBlock) {
544 assert(ExitBlock && "Should have a unique exit block!");
545 assert(L->hasDedicatedExits() && "Loop should have dedicated exits!");
546
547 Builder.CreateCondBr(Builder.getFalse(), L->getHeader(), ExitBlock);
548 // Remove the old branch. The conditional branch becomes a new terminator.
549 OldTerm->eraseFromParent();
550
551 // Rewrite phis in the exit block to get their inputs from the Preheader
552 // instead of the exiting block.
553 for (PHINode &P : ExitBlock->phis()) {
554 // Set the zero'th element of Phi to be from the preheader and remove all
555 // other incoming values. Given the loop has dedicated exits, all other
556 // incoming values must be from the exiting blocks.
557 int PredIndex = 0;
558 P.setIncomingBlock(PredIndex, Preheader);
559 // Removes all incoming values from all other exiting blocks (including
560 // duplicate values from an exiting block).
561 // Nuke all entries except the zero'th entry which is the preheader entry.
562 P.removeIncomingValueIf([](unsigned Idx) { return Idx != 0; },
563 /* DeletePHIIfEmpty */ false);
564
565 assert((P.getNumIncomingValues() == 1 &&
566 P.getIncomingBlock(PredIndex) == Preheader) &&
567 "Should have exactly one value and that's from the preheader!");
568 }
569
570 if (DT) {
571 DTU.applyUpdates({{DominatorTree::Insert, Preheader, ExitBlock}});
572 if (MSSA) {
573 MSSAU->applyUpdates({{DominatorTree::Insert, Preheader, ExitBlock}},
574 *DT);
575 if (VerifyMemorySSA)
576 MSSA->verifyMemorySSA();
577 }
578 }
579
580 // Disconnect the loop body by branching directly to its exit.
581 Builder.SetInsertPoint(Preheader->getTerminator());
582 Builder.CreateBr(ExitBlock);
583 // Remove the old branch.
584 Preheader->getTerminator()->eraseFromParent();
585 } else {
586 assert(L->hasNoExitBlocks() &&
587 "Loop should have either zero or one exit blocks.");
588
589 Builder.SetInsertPoint(OldTerm);
590 Builder.CreateUnreachable();
591 Preheader->getTerminator()->eraseFromParent();
592 }
593
594 if (DT) {
595 DTU.applyUpdates({{DominatorTree::Delete, Preheader, L->getHeader()}});
596 if (MSSA) {
597 MSSAU->applyUpdates({{DominatorTree::Delete, Preheader, L->getHeader()}},
598 *DT);
599 SmallSetVector<BasicBlock *, 8> DeadBlockSet(L->block_begin(),
600 L->block_end());
601 MSSAU->removeBlocks(DeadBlockSet);
602 if (VerifyMemorySSA)
603 MSSA->verifyMemorySSA();
604 }
605 }
606
607 // Use a map to unique and a vector to guarantee deterministic ordering.
609 llvm::SmallVector<DbgVariableRecord *, 4> DeadDbgVariableRecords;
610
611 if (ExitBlock) {
612 // Given LCSSA form is satisfied, we should not have users of instructions
613 // within the dead loop outside of the loop. However, LCSSA doesn't take
614 // unreachable uses into account. We handle them here.
615 // We could do it after drop all references (in this case all users in the
616 // loop will be already eliminated and we have less work to do but according
617 // to API doc of User::dropAllReferences only valid operation after dropping
618 // references, is deletion. So let's substitute all usages of
619 // instruction from the loop with poison value of corresponding type first.
620 for (auto *Block : L->blocks())
621 for (Instruction &I : *Block) {
622 auto *Poison = PoisonValue::get(I.getType());
623 for (Use &U : llvm::make_early_inc_range(I.uses())) {
624 if (auto *Usr = dyn_cast<Instruction>(U.getUser()))
625 if (L->contains(Usr->getParent()))
626 continue;
627 // If we have a DT then we can check that uses outside a loop only in
628 // unreachable block.
629 if (DT)
631 "Unexpected user in reachable block");
632 U.set(Poison);
633 }
634
635 // For one of each variable encountered, preserve a debug record (set
636 // to Poison) and transfer it to the loop exit. This terminates any
637 // variable locations that were set during the loop.
638 for (DbgVariableRecord &DVR :
639 llvm::make_early_inc_range(filterDbgVars(I.getDbgRecordRange()))) {
640 DebugVariable Key(DVR.getVariable(), DVR.getExpression(),
641 DVR.getDebugLoc().get());
642 if (!DeadDebugSet.insert(Key).second)
643 continue;
644 // Unlinks the DVR from it's container, for later insertion.
645 DVR.removeFromParent();
646 DeadDbgVariableRecords.push_back(&DVR);
647 }
648 }
649
650 // After the loop has been deleted all the values defined and modified
651 // inside the loop are going to be unavailable. Values computed in the
652 // loop will have been deleted, automatically causing their debug uses
653 // be be replaced with undef. Loop invariant values will still be available.
654 // Move dbg.values out the loop so that earlier location ranges are still
655 // terminated and loop invariant assignments are preserved.
656 DIBuilder DIB(*ExitBlock->getModule());
657 BasicBlock::iterator InsertDbgValueBefore =
658 ExitBlock->getFirstInsertionPt();
659 assert(InsertDbgValueBefore != ExitBlock->end() &&
660 "There should be a non-PHI instruction in exit block, else these "
661 "instructions will have no parent.");
662
663 // Due to the "head" bit in BasicBlock::iterator, we're going to insert
664 // each DbgVariableRecord right at the start of the block, wheras dbg.values
665 // would be repeatedly inserted before the first instruction. To replicate
666 // this behaviour, do it backwards.
667 for (DbgVariableRecord *DVR : llvm::reverse(DeadDbgVariableRecords))
668 ExitBlock->insertDbgRecordBefore(DVR, InsertDbgValueBefore);
669 }
670
671 // Remove the block from the reference counting scheme, so that we can
672 // delete it freely later.
673 for (auto *Block : L->blocks())
674 Block->dropAllReferences();
675
676 if (MSSA && VerifyMemorySSA)
677 MSSA->verifyMemorySSA();
678
679 if (LI) {
680 // Erase the instructions and the blocks without having to worry
681 // about ordering because we already dropped the references.
682 // NOTE: This iteration is safe because erasing the block does not remove
683 // its entry from the loop's block list. We do that in the next section.
684 for (BasicBlock *BB : L->blocks())
685 BB->eraseFromParent();
686
687 // Finally, the blocks from loopinfo. This has to happen late because
688 // otherwise our loop iterators won't work.
689
691 for (BasicBlock *BB : blocks)
692 LI->removeBlock(BB);
693
694 // The last step is to update LoopInfo now that we've eliminated this loop.
695 // Note: LoopInfo::erase remove the given loop and relink its subloops with
696 // its parent. While removeLoop/removeChildLoop remove the given loop but
697 // not relink its subloops, which is what we want.
698 if (Loop *ParentLoop = L->getParentLoop()) {
699 Loop::iterator I = find(*ParentLoop, L);
700 assert(I != ParentLoop->end() && "Couldn't find loop");
701 ParentLoop->removeChildLoop(I);
702 } else {
703 Loop::iterator I = find(*LI, L);
704 assert(I != LI->end() && "Couldn't find loop");
705 LI->removeLoop(I);
706 }
707 LI->destroy(L);
708 }
709}
710
712 LoopInfo &LI, MemorySSA *MSSA) {
713 auto *Latch = L->getLoopLatch();
714 assert(Latch && "multiple latches not yet supported");
715 auto *Header = L->getHeader();
716 Loop *OutermostLoop = L->getOutermostLoop();
717
718 SE.forgetLoop(L);
720
721 std::unique_ptr<MemorySSAUpdater> MSSAU;
722 if (MSSA)
723 MSSAU = std::make_unique<MemorySSAUpdater>(MSSA);
724
725 // Update the CFG and domtree. We chose to special case a couple of
726 // of common cases for code quality and test readability reasons.
727 [&]() -> void {
728 if (auto *BI = dyn_cast<BranchInst>(Latch->getTerminator())) {
729 if (!BI->isConditional()) {
730 DomTreeUpdater DTU(&DT, DomTreeUpdater::UpdateStrategy::Eager);
731 (void)changeToUnreachable(BI, /*PreserveLCSSA*/ true, &DTU,
732 MSSAU.get());
733 return;
734 }
735
736 // Conditional latch/exit - note that latch can be shared by inner
737 // and outer loop so the other target doesn't need to an exit
738 if (L->isLoopExiting(Latch)) {
739 // TODO: Generalize ConstantFoldTerminator so that it can be used
740 // here without invalidating LCSSA or MemorySSA. (Tricky case for
741 // LCSSA: header is an exit block of a preceeding sibling loop w/o
742 // dedicated exits.)
743 const unsigned ExitIdx = L->contains(BI->getSuccessor(0)) ? 1 : 0;
744 BasicBlock *ExitBB = BI->getSuccessor(ExitIdx);
745
746 DomTreeUpdater DTU(&DT, DomTreeUpdater::UpdateStrategy::Eager);
747 Header->removePredecessor(Latch, true);
748
749 IRBuilder<> Builder(BI);
750 auto *NewBI = Builder.CreateBr(ExitBB);
751 // Transfer the metadata to the new branch instruction (minus the
752 // loop info since this is no longer a loop)
753 NewBI->copyMetadata(*BI, {LLVMContext::MD_dbg,
754 LLVMContext::MD_annotation});
755
756 BI->eraseFromParent();
757 DTU.applyUpdates({{DominatorTree::Delete, Latch, Header}});
758 if (MSSA)
759 MSSAU->applyUpdates({{DominatorTree::Delete, Latch, Header}}, DT);
760 return;
761 }
762 }
763
764 // General case. By splitting the backedge, and then explicitly making it
765 // unreachable we gracefully handle corner cases such as switch and invoke
766 // termiantors.
767 auto *BackedgeBB = SplitEdge(Latch, Header, &DT, &LI, MSSAU.get());
768
769 DomTreeUpdater DTU(&DT, DomTreeUpdater::UpdateStrategy::Eager);
770 (void)changeToUnreachable(BackedgeBB->getTerminator(),
771 /*PreserveLCSSA*/ true, &DTU, MSSAU.get());
772 }();
773
774 // Erase (and destroy) this loop instance. Handles relinking sub-loops
775 // and blocks within the loop as needed.
776 LI.erase(L);
777
778 // If the loop we broke had a parent, then changeToUnreachable might have
779 // caused a block to be removed from the parent loop (see loop_nest_lcssa
780 // test case in zero-btc.ll for an example), thus changing the parent's
781 // exit blocks. If that happened, we need to rebuild LCSSA on the outermost
782 // loop which might have a had a block removed.
783 if (OutermostLoop != L)
784 formLCSSARecursively(*OutermostLoop, DT, &LI, &SE);
785}
786
787
788/// Checks if \p L has an exiting latch branch. There may also be other
789/// exiting blocks. Returns branch instruction terminating the loop
790/// latch if above check is successful, nullptr otherwise.
792 BasicBlock *Latch = L->getLoopLatch();
793 if (!Latch)
794 return nullptr;
795
796 BranchInst *LatchBR = dyn_cast<BranchInst>(Latch->getTerminator());
797 if (!LatchBR || LatchBR->getNumSuccessors() != 2 || !L->isLoopExiting(Latch))
798 return nullptr;
799
800 assert((LatchBR->getSuccessor(0) == L->getHeader() ||
801 LatchBR->getSuccessor(1) == L->getHeader()) &&
802 "At least one edge out of the latch must go to the header");
803
804 return LatchBR;
805}
806
807struct DbgLoop {
808 const Loop *L;
809 explicit DbgLoop(const Loop *L) : L(L) {}
810};
811
812#ifndef NDEBUG
814 OS << "function ";
815 D.L->getHeader()->getParent()->printAsOperand(OS, /*PrintType=*/false);
816 return OS << " " << *D.L;
817}
818#endif // NDEBUG
819
820static std::optional<unsigned> estimateLoopTripCount(Loop *L) {
821 // Currently we take the estimate exit count only from the loop latch,
822 // ignoring other exiting blocks. This can overestimate the trip count
823 // if we exit through another exit, but can never underestimate it.
824 // TODO: incorporate information from other exits
825 BranchInst *ExitingBranch = getExpectedExitLoopLatchBranch(L);
826 if (!ExitingBranch) {
827 LLVM_DEBUG(dbgs() << "estimateLoopTripCount: Failed to find exiting "
828 << "latch branch of required form in " << DbgLoop(L)
829 << "\n");
830 return std::nullopt;
831 }
832
833 // To estimate the number of times the loop body was executed, we want to
834 // know the number of times the backedge was taken, vs. the number of times
835 // we exited the loop.
836 uint64_t LoopWeight, ExitWeight;
837 if (!extractBranchWeights(*ExitingBranch, LoopWeight, ExitWeight)) {
838 LLVM_DEBUG(dbgs() << "estimateLoopTripCount: Failed to extract branch "
839 << "weights for " << DbgLoop(L) << "\n");
840 return std::nullopt;
841 }
842
843 if (L->contains(ExitingBranch->getSuccessor(1)))
844 std::swap(LoopWeight, ExitWeight);
845
846 if (!ExitWeight) {
847 // Don't have a way to return predicated infinite
848 LLVM_DEBUG(dbgs() << "estimateLoopTripCount: Failed because of zero exit "
849 << "probability for " << DbgLoop(L) << "\n");
850 return std::nullopt;
851 }
852
853 // Estimated exit count is a ratio of the loop weight by the weight of the
854 // edge exiting the loop, rounded to nearest.
855 uint64_t ExitCount = llvm::divideNearest(LoopWeight, ExitWeight);
856
857 // When ExitCount + 1 would wrap in unsigned, saturate at UINT_MAX.
858 if (ExitCount >= std::numeric_limits<unsigned>::max())
859 return std::numeric_limits<unsigned>::max();
860
861 // Estimated trip count is one plus estimated exit count.
862 uint64_t TC = ExitCount + 1;
863 LLVM_DEBUG(dbgs() << "estimateLoopTripCount: Estimated trip count of " << TC
864 << " for " << DbgLoop(L) << "\n");
865 return TC;
866}
867
868std::optional<unsigned>
870 unsigned *EstimatedLoopInvocationWeight) {
871 // If EstimatedLoopInvocationWeight, we do not support this loop if
872 // getExpectedExitLoopLatchBranch returns nullptr.
873 //
874 // FIXME: Also, this is a stop-gap solution for nested loops. It avoids
875 // mistaking LLVMLoopEstimatedTripCount metadata to be for an outer loop when
876 // it was created for an inner loop. The problem is that loop metadata is
877 // attached to the branch instruction in the loop latch block, but that can be
878 // shared by the loops. A solution is to attach loop metadata to loop headers
879 // instead, but that would be a large change to LLVM.
880 //
881 // Until that happens, we work around the problem as follows.
882 // getExpectedExitLoopLatchBranch (which also guards
883 // setLoopEstimatedTripCount) returns nullptr for a loop unless the loop has
884 // one latch and that latch has exactly two successors one of which is an exit
885 // from the loop. If the latch is shared by nested loops, then that condition
886 // might hold for the inner loop but cannot hold for the outer loop:
887 // - Because the latch is shared, it must have at least two successors: the
888 // inner loop header and the outer loop header, which is also an exit for
889 // the inner loop. That satisifies the condition for the inner loop.
890 // - To satsify the condition for the outer loop, the latch must have a third
891 // successor that is an exit for the outer loop. But that violates the
892 // condition for both loops.
893 BranchInst *ExitingBranch = getExpectedExitLoopLatchBranch(L);
894 if (!ExitingBranch)
895 return std::nullopt;
896
897 // If requested, either compute *EstimatedLoopInvocationWeight or return
898 // nullopt if cannot.
899 //
900 // TODO: Eventually, once all passes have migrated away from setting branch
901 // weights to indicate estimated trip counts, this function will drop the
902 // EstimatedLoopInvocationWeight parameter.
903 if (EstimatedLoopInvocationWeight) {
904 uint64_t LoopWeight = 0, ExitWeight = 0; // Inits expected to be unused.
905 if (!extractBranchWeights(*ExitingBranch, LoopWeight, ExitWeight))
906 return std::nullopt;
907 if (L->contains(ExitingBranch->getSuccessor(1)))
908 std::swap(LoopWeight, ExitWeight);
909 if (!ExitWeight)
910 return std::nullopt;
911 *EstimatedLoopInvocationWeight = ExitWeight;
912 }
913
914 // Return the estimated trip count from metadata unless the metadata is
915 // missing or has no value.
917 LLVM_DEBUG(dbgs() << "getLoopEstimatedTripCount: "
918 << LLVMLoopEstimatedTripCount << " metadata has trip "
919 << "count of " << *TC << " for " << DbgLoop(L) << "\n");
920 return TC;
921 }
922
923 // Estimate the trip count from latch branch weights.
924 return estimateLoopTripCount(L);
925}
926
928 Loop *L, unsigned EstimatedTripCount,
929 std::optional<unsigned> EstimatedloopInvocationWeight) {
930 // If EstimatedLoopInvocationWeight, we do not support this loop if
931 // getExpectedExitLoopLatchBranch returns nullptr.
932 //
933 // FIXME: See comments in getLoopEstimatedTripCount for why this is required
934 // here regardless of EstimatedLoopInvocationWeight.
936 if (!LatchBranch)
937 return false;
938
939 // Set the metadata.
941
942 // At the moment, we currently support changing the estimated trip count in
943 // the latch branch's branch weights only. We could extend this API to
944 // manipulate estimated trip counts for any exit.
945 //
946 // TODO: Eventually, once all passes have migrated away from setting branch
947 // weights to indicate estimated trip counts, we will not set branch weights
948 // here at all.
949 if (!EstimatedloopInvocationWeight)
950 return true;
951
952 // Calculate taken and exit weights.
953 unsigned LatchExitWeight = 0;
954 unsigned BackedgeTakenWeight = 0;
955
956 if (EstimatedTripCount != 0) {
957 LatchExitWeight = *EstimatedloopInvocationWeight;
958 BackedgeTakenWeight = (EstimatedTripCount - 1) * LatchExitWeight;
959 }
960
961 // Make a swap if back edge is taken when condition is "false".
962 if (LatchBranch->getSuccessor(0) != L->getHeader())
963 std::swap(BackedgeTakenWeight, LatchExitWeight);
964
965 MDBuilder MDB(LatchBranch->getContext());
966
967 // Set/Update profile metadata.
968 LatchBranch->setMetadata(
969 LLVMContext::MD_prof,
970 MDB.createBranchWeights(BackedgeTakenWeight, LatchExitWeight));
971
972 return true;
973}
974
976 ScalarEvolution &SE) {
977 Loop *OuterL = InnerLoop->getParentLoop();
978 if (!OuterL)
979 return true;
980
981 // Get the backedge taken count for the inner loop
982 BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch();
983 const SCEV *InnerLoopBECountSC = SE.getExitCount(InnerLoop, InnerLoopLatch);
984 if (isa<SCEVCouldNotCompute>(InnerLoopBECountSC) ||
985 !InnerLoopBECountSC->getType()->isIntegerTy())
986 return false;
987
988 // Get whether count is invariant to the outer loop
990 SE.getLoopDisposition(InnerLoopBECountSC, OuterL);
992 return false;
993
994 return true;
995}
996
998 switch (RK) {
999 default:
1000 llvm_unreachable("Unexpected recurrence kind");
1002 case RecurKind::Sub:
1003 case RecurKind::Add:
1004 return Intrinsic::vector_reduce_add;
1005 case RecurKind::Mul:
1006 return Intrinsic::vector_reduce_mul;
1007 case RecurKind::And:
1008 return Intrinsic::vector_reduce_and;
1009 case RecurKind::Or:
1010 return Intrinsic::vector_reduce_or;
1011 case RecurKind::Xor:
1012 return Intrinsic::vector_reduce_xor;
1013 case RecurKind::FMulAdd:
1014 case RecurKind::FAdd:
1015 return Intrinsic::vector_reduce_fadd;
1016 case RecurKind::FMul:
1017 return Intrinsic::vector_reduce_fmul;
1018 case RecurKind::SMax:
1019 return Intrinsic::vector_reduce_smax;
1020 case RecurKind::SMin:
1021 return Intrinsic::vector_reduce_smin;
1022 case RecurKind::UMax:
1023 return Intrinsic::vector_reduce_umax;
1024 case RecurKind::UMin:
1025 return Intrinsic::vector_reduce_umin;
1026 case RecurKind::FMax:
1027 case RecurKind::FMaxNum:
1028 return Intrinsic::vector_reduce_fmax;
1029 case RecurKind::FMin:
1030 case RecurKind::FMinNum:
1031 return Intrinsic::vector_reduce_fmin;
1033 return Intrinsic::vector_reduce_fmaximum;
1035 return Intrinsic::vector_reduce_fminimum;
1037 return Intrinsic::vector_reduce_fmax;
1039 return Intrinsic::vector_reduce_fmin;
1040 }
1041}
1042
1044 switch (IID) {
1045 default:
1046 llvm_unreachable("Unexpected intrinsic id");
1047 case Intrinsic::umin:
1048 return Intrinsic::vector_reduce_umin;
1049 case Intrinsic::umax:
1050 return Intrinsic::vector_reduce_umax;
1051 case Intrinsic::smin:
1052 return Intrinsic::vector_reduce_smin;
1053 case Intrinsic::smax:
1054 return Intrinsic::vector_reduce_smax;
1055 }
1056}
1057
1058// This is the inverse to getReductionForBinop
1060 switch (RdxID) {
1061 case Intrinsic::vector_reduce_fadd:
1062 return Instruction::FAdd;
1063 case Intrinsic::vector_reduce_fmul:
1064 return Instruction::FMul;
1065 case Intrinsic::vector_reduce_add:
1066 return Instruction::Add;
1067 case Intrinsic::vector_reduce_mul:
1068 return Instruction::Mul;
1069 case Intrinsic::vector_reduce_and:
1070 return Instruction::And;
1071 case Intrinsic::vector_reduce_or:
1072 return Instruction::Or;
1073 case Intrinsic::vector_reduce_xor:
1074 return Instruction::Xor;
1075 case Intrinsic::vector_reduce_smax:
1076 case Intrinsic::vector_reduce_smin:
1077 case Intrinsic::vector_reduce_umax:
1078 case Intrinsic::vector_reduce_umin:
1079 return Instruction::ICmp;
1080 case Intrinsic::vector_reduce_fmax:
1081 case Intrinsic::vector_reduce_fmin:
1082 return Instruction::FCmp;
1083 default:
1084 llvm_unreachable("Unexpected ID");
1085 }
1086}
1087
1088// This is the inverse to getArithmeticReductionInstruction
1090 switch (Opc) {
1091 default:
1092 break;
1093 case Instruction::Add:
1094 return Intrinsic::vector_reduce_add;
1095 case Instruction::Mul:
1096 return Intrinsic::vector_reduce_mul;
1097 case Instruction::And:
1098 return Intrinsic::vector_reduce_and;
1099 case Instruction::Or:
1100 return Intrinsic::vector_reduce_or;
1101 case Instruction::Xor:
1102 return Intrinsic::vector_reduce_xor;
1103 }
1105}
1106
1108 switch (RdxID) {
1109 default:
1110 llvm_unreachable("Unknown min/max recurrence kind");
1111 case Intrinsic::vector_reduce_umin:
1112 return Intrinsic::umin;
1113 case Intrinsic::vector_reduce_umax:
1114 return Intrinsic::umax;
1115 case Intrinsic::vector_reduce_smin:
1116 return Intrinsic::smin;
1117 case Intrinsic::vector_reduce_smax:
1118 return Intrinsic::smax;
1119 case Intrinsic::vector_reduce_fmin:
1120 return Intrinsic::minnum;
1121 case Intrinsic::vector_reduce_fmax:
1122 return Intrinsic::maxnum;
1123 case Intrinsic::vector_reduce_fminimum:
1124 return Intrinsic::minimum;
1125 case Intrinsic::vector_reduce_fmaximum:
1126 return Intrinsic::maximum;
1127 }
1128}
1129
1131 switch (RK) {
1132 default:
1133 llvm_unreachable("Unknown min/max recurrence kind");
1134 case RecurKind::UMin:
1135 return Intrinsic::umin;
1136 case RecurKind::UMax:
1137 return Intrinsic::umax;
1138 case RecurKind::SMin:
1139 return Intrinsic::smin;
1140 case RecurKind::SMax:
1141 return Intrinsic::smax;
1142 case RecurKind::FMin:
1143 case RecurKind::FMinNum:
1144 return Intrinsic::minnum;
1145 case RecurKind::FMax:
1146 case RecurKind::FMaxNum:
1147 return Intrinsic::maxnum;
1149 return Intrinsic::minimum;
1151 return Intrinsic::maximum;
1153 return Intrinsic::minimumnum;
1155 return Intrinsic::maximumnum;
1156 }
1157}
1158
1160 switch (RdxID) {
1161 case Intrinsic::vector_reduce_smax:
1162 return RecurKind::SMax;
1163 case Intrinsic::vector_reduce_smin:
1164 return RecurKind::SMin;
1165 case Intrinsic::vector_reduce_umax:
1166 return RecurKind::UMax;
1167 case Intrinsic::vector_reduce_umin:
1168 return RecurKind::UMin;
1169 case Intrinsic::vector_reduce_fmax:
1170 return RecurKind::FMax;
1171 case Intrinsic::vector_reduce_fmin:
1172 return RecurKind::FMin;
1173 default:
1174 return RecurKind::None;
1175 }
1176}
1177
1179 switch (RK) {
1180 default:
1181 llvm_unreachable("Unknown min/max recurrence kind");
1182 case RecurKind::UMin:
1183 return CmpInst::ICMP_ULT;
1184 case RecurKind::UMax:
1185 return CmpInst::ICMP_UGT;
1186 case RecurKind::SMin:
1187 return CmpInst::ICMP_SLT;
1188 case RecurKind::SMax:
1189 return CmpInst::ICMP_SGT;
1190 case RecurKind::FMin:
1191 return CmpInst::FCMP_OLT;
1192 case RecurKind::FMax:
1193 return CmpInst::FCMP_OGT;
1194 // We do not add FMinimum/FMaximum recurrence kind here since there is no
1195 // equivalent predicate which compares signed zeroes according to the
1196 // semantics of the intrinsics (llvm.minimum/maximum).
1197 }
1198}
1199
1201 Value *Right) {
1202 Type *Ty = Left->getType();
1203 if (Ty->isIntOrIntVectorTy() ||
1204 (RK == RecurKind::FMinNum || RK == RecurKind::FMaxNum ||
1208 return Builder.CreateIntrinsic(Ty, Id, {Left, Right}, nullptr,
1209 "rdx.minmax");
1210 }
1212 Value *Cmp = Builder.CreateCmp(Pred, Left, Right, "rdx.minmax.cmp");
1213 Value *Select = Builder.CreateSelect(Cmp, Left, Right, "rdx.minmax.select");
1214 return Select;
1215}
1216
1217// Helper to generate an ordered reduction.
1219 unsigned Op, RecurKind RdxKind) {
1220 unsigned VF = cast<FixedVectorType>(Src->getType())->getNumElements();
1221
1222 // Extract and apply reduction ops in ascending order:
1223 // e.g. ((((Acc + Scl[0]) + Scl[1]) + Scl[2]) + ) ... + Scl[VF-1]
1224 Value *Result = Acc;
1225 for (unsigned ExtractIdx = 0; ExtractIdx != VF; ++ExtractIdx) {
1226 Value *Ext =
1227 Builder.CreateExtractElement(Src, Builder.getInt32(ExtractIdx));
1228
1229 if (Op != Instruction::ICmp && Op != Instruction::FCmp) {
1230 Result = Builder.CreateBinOp((Instruction::BinaryOps)Op, Result, Ext,
1231 "bin.rdx");
1232 } else {
1234 "Invalid min/max");
1235 Result = createMinMaxOp(Builder, RdxKind, Result, Ext);
1236 }
1237 }
1238
1239 return Result;
1240}
1241
1242// Helper to generate a log2 shuffle reduction.
1244 unsigned Op,
1246 RecurKind RdxKind) {
1247 unsigned VF = cast<FixedVectorType>(Src->getType())->getNumElements();
1248 // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles
1249 // and vector ops, reducing the set of values being computed by half each
1250 // round.
1251 assert(isPowerOf2_32(VF) &&
1252 "Reduction emission only supported for pow2 vectors!");
1253 // Note: fast-math-flags flags are controlled by the builder configuration
1254 // and are assumed to apply to all generated arithmetic instructions. Other
1255 // poison generating flags (nsw/nuw/inbounds/inrange/exact) are not part
1256 // of the builder configuration, and since they're not passed explicitly,
1257 // will never be relevant here. Note that it would be generally unsound to
1258 // propagate these from an intrinsic call to the expansion anyways as we/
1259 // change the order of operations.
1260 auto BuildShuffledOp = [&Builder, &Op,
1261 &RdxKind](SmallVectorImpl<int> &ShuffleMask,
1262 Value *&TmpVec) -> void {
1263 Value *Shuf = Builder.CreateShuffleVector(TmpVec, ShuffleMask, "rdx.shuf");
1264 if (Op != Instruction::ICmp && Op != Instruction::FCmp) {
1265 TmpVec = Builder.CreateBinOp((Instruction::BinaryOps)Op, TmpVec, Shuf,
1266 "bin.rdx");
1267 } else {
1269 "Invalid min/max");
1270 TmpVec = createMinMaxOp(Builder, RdxKind, TmpVec, Shuf);
1271 }
1272 };
1273
1274 Value *TmpVec = Src;
1276 SmallVector<int, 32> ShuffleMask(VF);
1277 for (unsigned stride = 1; stride < VF; stride <<= 1) {
1278 // Initialise the mask with undef.
1279 llvm::fill(ShuffleMask, -1);
1280 for (unsigned j = 0; j < VF; j += stride << 1) {
1281 ShuffleMask[j] = j + stride;
1282 }
1283 BuildShuffledOp(ShuffleMask, TmpVec);
1284 }
1285 } else {
1286 SmallVector<int, 32> ShuffleMask(VF);
1287 for (unsigned i = VF; i != 1; i >>= 1) {
1288 // Move the upper half of the vector to the lower half.
1289 for (unsigned j = 0; j != i / 2; ++j)
1290 ShuffleMask[j] = i / 2 + j;
1291
1292 // Fill the rest of the mask with undef.
1293 std::fill(&ShuffleMask[i / 2], ShuffleMask.end(), -1);
1294 BuildShuffledOp(ShuffleMask, TmpVec);
1295 }
1296 }
1297 // The result is in the first element of the vector.
1298 return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0));
1299}
1300
1302 Value *InitVal, PHINode *OrigPhi) {
1303 Value *NewVal = nullptr;
1304
1305 // First use the original phi to determine the new value we're trying to
1306 // select from in the loop.
1307 SelectInst *SI = nullptr;
1308 for (auto *U : OrigPhi->users()) {
1309 if ((SI = dyn_cast<SelectInst>(U)))
1310 break;
1311 }
1312 assert(SI && "One user of the original phi should be a select");
1313
1314 if (SI->getTrueValue() == OrigPhi)
1315 NewVal = SI->getFalseValue();
1316 else {
1317 assert(SI->getFalseValue() == OrigPhi &&
1318 "At least one input to the select should be the original Phi");
1319 NewVal = SI->getTrueValue();
1320 }
1321
1322 // If any predicate is true it means that we want to select the new value.
1323 Value *AnyOf =
1324 Src->getType()->isVectorTy() ? Builder.CreateOrReduce(Src) : Src;
1325 // The compares in the loop may yield poison, which propagates through the
1326 // bitwise ORs. Freeze it here before the condition is used.
1327 AnyOf = Builder.CreateFreeze(AnyOf);
1328 return Builder.CreateSelect(AnyOf, NewVal, InitVal, "rdx.select");
1329}
1330
1332 RecurKind RdxKind, Value *Start,
1333 Value *Sentinel) {
1334 bool IsSigned = RecurrenceDescriptor::isSignedRecurrenceKind(RdxKind);
1335 bool IsMaxRdx = RecurrenceDescriptor::isFindLastIVRecurrenceKind(RdxKind);
1336 Value *MaxRdx = Src->getType()->isVectorTy()
1337 ? (IsMaxRdx ? Builder.CreateIntMaxReduce(Src, IsSigned)
1338 : Builder.CreateIntMinReduce(Src, IsSigned))
1339 : Src;
1340 // Correct the final reduction result back to the start value if the maximum
1341 // reduction is sentinel value.
1342 Value *Cmp =
1343 Builder.CreateCmp(CmpInst::ICMP_NE, MaxRdx, Sentinel, "rdx.select.cmp");
1344 return Builder.CreateSelect(Cmp, MaxRdx, Start, "rdx.select");
1345}
1346
1348 FastMathFlags Flags) {
1349 bool Negative = false;
1350 switch (RdxID) {
1351 default:
1352 llvm_unreachable("Expecting a reduction intrinsic");
1353 case Intrinsic::vector_reduce_add:
1354 case Intrinsic::vector_reduce_mul:
1355 case Intrinsic::vector_reduce_or:
1356 case Intrinsic::vector_reduce_xor:
1357 case Intrinsic::vector_reduce_and:
1358 case Intrinsic::vector_reduce_fadd:
1359 case Intrinsic::vector_reduce_fmul: {
1360 unsigned Opc = getArithmeticReductionInstruction(RdxID);
1361 return ConstantExpr::getBinOpIdentity(Opc, Ty, false,
1362 Flags.noSignedZeros());
1363 }
1364 case Intrinsic::vector_reduce_umax:
1365 case Intrinsic::vector_reduce_umin:
1366 case Intrinsic::vector_reduce_smin:
1367 case Intrinsic::vector_reduce_smax: {
1369 return ConstantExpr::getIntrinsicIdentity(ScalarID, Ty);
1370 }
1371 case Intrinsic::vector_reduce_fmax:
1372 case Intrinsic::vector_reduce_fmaximum:
1373 Negative = true;
1374 [[fallthrough]];
1375 case Intrinsic::vector_reduce_fmin:
1376 case Intrinsic::vector_reduce_fminimum: {
1377 bool PropagatesNaN = RdxID == Intrinsic::vector_reduce_fminimum ||
1378 RdxID == Intrinsic::vector_reduce_fmaximum;
1379 const fltSemantics &Semantics = Ty->getFltSemantics();
1380 return (!Flags.noNaNs() && !PropagatesNaN)
1381 ? ConstantFP::getQNaN(Ty, Negative)
1382 : !Flags.noInfs()
1383 ? ConstantFP::getInfinity(Ty, Negative)
1384 : ConstantFP::get(Ty, APFloat::getLargest(Semantics, Negative));
1385 }
1386 }
1387}
1388
1390 assert((!(K == RecurKind::FMin || K == RecurKind::FMax) ||
1391 (FMF.noNaNs() && FMF.noSignedZeros())) &&
1392 "nnan, nsz is expected to be set for FP min/max reduction.");
1394 return getReductionIdentity(RdxID, Tp, FMF);
1395}
1396
1398 RecurKind RdxKind) {
1399 auto *SrcVecEltTy = cast<VectorType>(Src->getType())->getElementType();
1400 auto getIdentity = [&]() {
1401 return getRecurrenceIdentity(RdxKind, SrcVecEltTy,
1402 Builder.getFastMathFlags());
1403 };
1404 switch (RdxKind) {
1406 case RecurKind::Sub:
1407 case RecurKind::Add:
1408 case RecurKind::Mul:
1409 case RecurKind::And:
1410 case RecurKind::Or:
1411 case RecurKind::Xor:
1412 case RecurKind::SMax:
1413 case RecurKind::SMin:
1414 case RecurKind::UMax:
1415 case RecurKind::UMin:
1416 case RecurKind::FMax:
1417 case RecurKind::FMin:
1418 case RecurKind::FMinNum:
1419 case RecurKind::FMaxNum:
1424 return Builder.CreateUnaryIntrinsic(getReductionIntrinsicID(RdxKind), Src);
1425 case RecurKind::FMulAdd:
1426 case RecurKind::FAdd:
1427 return Builder.CreateFAddReduce(getIdentity(), Src);
1428 case RecurKind::FMul:
1429 return Builder.CreateFMulReduce(getIdentity(), Src);
1430 default:
1431 llvm_unreachable("Unhandled opcode");
1432 }
1433}
1434
1436 RecurKind Kind, Value *Mask, Value *EVL) {
1439 "AnyOf and FindIV reductions are not supported.");
1441 auto VPID = VPIntrinsic::getForIntrinsic(Id);
1443 "No VPIntrinsic for this reduction");
1444 auto *EltTy = cast<VectorType>(Src->getType())->getElementType();
1445 Value *Iden = getRecurrenceIdentity(Kind, EltTy, Builder.getFastMathFlags());
1446 Value *Ops[] = {Iden, Src, Mask, EVL};
1447 return Builder.CreateIntrinsic(EltTy, VPID, Ops);
1448}
1449
1451 Value *Src, Value *Start) {
1452 assert((Kind == RecurKind::FAdd || Kind == RecurKind::FMulAdd) &&
1453 "Unexpected reduction kind");
1454 assert(Src->getType()->isVectorTy() && "Expected a vector type");
1455 assert(!Start->getType()->isVectorTy() && "Expected a scalar type");
1456
1457 return B.CreateFAddReduce(Start, Src);
1458}
1459
1461 Value *Src, Value *Start, Value *Mask,
1462 Value *EVL) {
1463 assert((Kind == RecurKind::FAdd || Kind == RecurKind::FMulAdd) &&
1464 "Unexpected reduction kind");
1465 assert(Src->getType()->isVectorTy() && "Expected a vector type");
1466 assert(!Start->getType()->isVectorTy() && "Expected a scalar type");
1467
1469 auto VPID = VPIntrinsic::getForIntrinsic(Id);
1471 "No VPIntrinsic for this reduction");
1472 auto *EltTy = cast<VectorType>(Src->getType())->getElementType();
1473 Value *Ops[] = {Start, Src, Mask, EVL};
1474 return Builder.CreateIntrinsic(EltTy, VPID, Ops);
1475}
1476
1478 bool IncludeWrapFlags) {
1479 auto *VecOp = dyn_cast<Instruction>(I);
1480 if (!VecOp)
1481 return;
1482 auto *Intersection = (OpValue == nullptr) ? dyn_cast<Instruction>(VL[0])
1483 : dyn_cast<Instruction>(OpValue);
1484 if (!Intersection)
1485 return;
1486 const unsigned Opcode = Intersection->getOpcode();
1487 VecOp->copyIRFlags(Intersection, IncludeWrapFlags);
1488 for (auto *V : VL) {
1489 auto *Instr = dyn_cast<Instruction>(V);
1490 if (!Instr)
1491 continue;
1492 if (OpValue == nullptr || Opcode == Instr->getOpcode())
1493 VecOp->andIRFlags(V);
1494 }
1495}
1496
1497bool llvm::isKnownNegativeInLoop(const SCEV *S, const Loop *L,
1498 ScalarEvolution &SE) {
1499 const SCEV *Zero = SE.getZero(S->getType());
1500 return SE.isAvailableAtLoopEntry(S, L) &&
1502}
1503
1505 ScalarEvolution &SE) {
1506 const SCEV *Zero = SE.getZero(S->getType());
1507 return SE.isAvailableAtLoopEntry(S, L) &&
1509}
1510
1511bool llvm::isKnownPositiveInLoop(const SCEV *S, const Loop *L,
1512 ScalarEvolution &SE) {
1513 const SCEV *Zero = SE.getZero(S->getType());
1514 return SE.isAvailableAtLoopEntry(S, L) &&
1516}
1517
1519 ScalarEvolution &SE) {
1520 const SCEV *Zero = SE.getZero(S->getType());
1521 return SE.isAvailableAtLoopEntry(S, L) &&
1523}
1524
1526 bool Signed) {
1527 unsigned BitWidth = cast<IntegerType>(S->getType())->getBitWidth();
1530 auto Predicate = Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1531 return SE.isAvailableAtLoopEntry(S, L) &&
1532 SE.isLoopEntryGuardedByCond(L, Predicate, S,
1533 SE.getConstant(Min));
1534}
1535
1537 bool Signed) {
1538 unsigned BitWidth = cast<IntegerType>(S->getType())->getBitWidth();
1541 auto Predicate = Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
1542 return SE.isAvailableAtLoopEntry(S, L) &&
1543 SE.isLoopEntryGuardedByCond(L, Predicate, S,
1544 SE.getConstant(Max));
1545}
1546
1547//===----------------------------------------------------------------------===//
1548// rewriteLoopExitValues - Optimize IV users outside the loop.
1549// As a side effect, reduces the amount of IV processing within the loop.
1550//===----------------------------------------------------------------------===//
1551
1552static bool hasHardUserWithinLoop(const Loop *L, const Instruction *I) {
1555 Visited.insert(I);
1556 WorkList.push_back(I);
1557 while (!WorkList.empty()) {
1558 const Instruction *Curr = WorkList.pop_back_val();
1559 // This use is outside the loop, nothing to do.
1560 if (!L->contains(Curr))
1561 continue;
1562 // Do we assume it is a "hard" use which will not be eliminated easily?
1563 if (Curr->mayHaveSideEffects())
1564 return true;
1565 // Otherwise, add all its users to worklist.
1566 for (const auto *U : Curr->users()) {
1567 auto *UI = cast<Instruction>(U);
1568 if (Visited.insert(UI).second)
1569 WorkList.push_back(UI);
1570 }
1571 }
1572 return false;
1573}
1574
1575// Collect information about PHI nodes which can be transformed in
1576// rewriteLoopExitValues.
1578 PHINode *PN; // For which PHI node is this replacement?
1579 unsigned Ith; // For which incoming value?
1580 const SCEV *ExpansionSCEV; // The SCEV of the incoming value we are rewriting.
1581 Instruction *ExpansionPoint; // Where we'd like to expand that SCEV?
1582 bool HighCost; // Is this expansion a high-cost?
1583
1584 RewritePhi(PHINode *P, unsigned I, const SCEV *Val, Instruction *ExpansionPt,
1585 bool H)
1586 : PN(P), Ith(I), ExpansionSCEV(Val), ExpansionPoint(ExpansionPt),
1587 HighCost(H) {}
1588};
1589
1590// Check whether it is possible to delete the loop after rewriting exit
1591// value. If it is possible, ignore ReplaceExitValue and do rewriting
1592// aggressively.
1593static bool canLoopBeDeleted(Loop *L, SmallVector<RewritePhi, 8> &RewritePhiSet) {
1594 BasicBlock *Preheader = L->getLoopPreheader();
1595 // If there is no preheader, the loop will not be deleted.
1596 if (!Preheader)
1597 return false;
1598
1599 // In LoopDeletion pass Loop can be deleted when ExitingBlocks.size() > 1.
1600 // We obviate multiple ExitingBlocks case for simplicity.
1601 // TODO: If we see testcase with multiple ExitingBlocks can be deleted
1602 // after exit value rewriting, we can enhance the logic here.
1603 SmallVector<BasicBlock *, 4> ExitingBlocks;
1604 L->getExitingBlocks(ExitingBlocks);
1606 L->getUniqueExitBlocks(ExitBlocks);
1607 if (ExitBlocks.size() != 1 || ExitingBlocks.size() != 1)
1608 return false;
1609
1610 BasicBlock *ExitBlock = ExitBlocks[0];
1611 BasicBlock::iterator BI = ExitBlock->begin();
1612 while (PHINode *P = dyn_cast<PHINode>(BI)) {
1613 Value *Incoming = P->getIncomingValueForBlock(ExitingBlocks[0]);
1614
1615 // If the Incoming value of P is found in RewritePhiSet, we know it
1616 // could be rewritten to use a loop invariant value in transformation
1617 // phase later. Skip it in the loop invariant check below.
1618 bool found = false;
1619 for (const RewritePhi &Phi : RewritePhiSet) {
1620 unsigned i = Phi.Ith;
1621 if (Phi.PN == P && (Phi.PN)->getIncomingValue(i) == Incoming) {
1622 found = true;
1623 break;
1624 }
1625 }
1626
1627 Instruction *I;
1628 if (!found && (I = dyn_cast<Instruction>(Incoming)))
1629 if (!L->hasLoopInvariantOperands(I))
1630 return false;
1631
1632 ++BI;
1633 }
1634
1635 for (auto *BB : L->blocks())
1636 if (llvm::any_of(*BB, [](Instruction &I) {
1637 return I.mayHaveSideEffects();
1638 }))
1639 return false;
1640
1641 return true;
1642}
1643
1644/// Checks if it is safe to call InductionDescriptor::isInductionPHI for \p Phi,
1645/// and returns true if this Phi is an induction phi in the loop. When
1646/// isInductionPHI returns true, \p ID will be also be set by isInductionPHI.
1647static bool checkIsIndPhi(PHINode *Phi, Loop *L, ScalarEvolution *SE,
1649 if (!Phi)
1650 return false;
1651 if (!L->getLoopPreheader())
1652 return false;
1653 if (Phi->getParent() != L->getHeader())
1654 return false;
1655 return InductionDescriptor::isInductionPHI(Phi, L, SE, ID);
1656}
1657
1659 ScalarEvolution *SE,
1660 const TargetTransformInfo *TTI,
1661 SCEVExpander &Rewriter, DominatorTree *DT,
1664 // Check a pre-condition.
1665 assert(L->isRecursivelyLCSSAForm(*DT, *LI) &&
1666 "Indvars did not preserve LCSSA!");
1667
1668 SmallVector<BasicBlock*, 8> ExitBlocks;
1669 L->getUniqueExitBlocks(ExitBlocks);
1670
1671 SmallVector<RewritePhi, 8> RewritePhiSet;
1672 // Find all values that are computed inside the loop, but used outside of it.
1673 // Because of LCSSA, these values will only occur in LCSSA PHI Nodes. Scan
1674 // the exit blocks of the loop to find them.
1675 for (BasicBlock *ExitBB : ExitBlocks) {
1676 // If there are no PHI nodes in this exit block, then no values defined
1677 // inside the loop are used on this path, skip it.
1678 PHINode *PN = dyn_cast<PHINode>(ExitBB->begin());
1679 if (!PN) continue;
1680
1681 unsigned NumPreds = PN->getNumIncomingValues();
1682
1683 // Iterate over all of the PHI nodes.
1684 BasicBlock::iterator BBI = ExitBB->begin();
1685 while ((PN = dyn_cast<PHINode>(BBI++))) {
1686 if (PN->use_empty())
1687 continue; // dead use, don't replace it
1688
1689 if (!SE->isSCEVable(PN->getType()))
1690 continue;
1691
1692 // Iterate over all of the values in all the PHI nodes.
1693 for (unsigned i = 0; i != NumPreds; ++i) {
1694 // If the value being merged in is not integer or is not defined
1695 // in the loop, skip it.
1696 Value *InVal = PN->getIncomingValue(i);
1697 if (!isa<Instruction>(InVal))
1698 continue;
1699
1700 // If this pred is for a subloop, not L itself, skip it.
1701 if (LI->getLoopFor(PN->getIncomingBlock(i)) != L)
1702 continue; // The Block is in a subloop, skip it.
1703
1704 // Check that InVal is defined in the loop.
1705 Instruction *Inst = cast<Instruction>(InVal);
1706 if (!L->contains(Inst))
1707 continue;
1708
1709 // Find exit values which are induction variables in the loop, and are
1710 // unused in the loop, with the only use being the exit block PhiNode,
1711 // and the induction variable update binary operator.
1712 // The exit value can be replaced with the final value when it is cheap
1713 // to do so.
1716 PHINode *IndPhi = dyn_cast<PHINode>(Inst);
1717 if (IndPhi) {
1718 if (!checkIsIndPhi(IndPhi, L, SE, ID))
1719 continue;
1720 // This is an induction PHI. Check that the only users are PHI
1721 // nodes, and induction variable update binary operators.
1722 if (llvm::any_of(Inst->users(), [&](User *U) {
1723 if (!isa<PHINode>(U) && !isa<BinaryOperator>(U))
1724 return true;
1725 BinaryOperator *B = dyn_cast<BinaryOperator>(U);
1726 if (B && B != ID.getInductionBinOp())
1727 return true;
1728 return false;
1729 }))
1730 continue;
1731 } else {
1732 // If it is not an induction phi, it must be an induction update
1733 // binary operator with an induction phi user.
1735 if (!B)
1736 continue;
1737 if (llvm::any_of(Inst->users(), [&](User *U) {
1738 PHINode *Phi = dyn_cast<PHINode>(U);
1739 if (Phi != PN && !checkIsIndPhi(Phi, L, SE, ID))
1740 return true;
1741 return false;
1742 }))
1743 continue;
1744 if (B != ID.getInductionBinOp())
1745 continue;
1746 }
1747 }
1748
1749 // Okay, this instruction has a user outside of the current loop
1750 // and varies predictably *inside* the loop. Evaluate the value it
1751 // contains when the loop exits, if possible. We prefer to start with
1752 // expressions which are true for all exits (so as to maximize
1753 // expression reuse by the SCEVExpander), but resort to per-exit
1754 // evaluation if that fails.
1755 const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop());
1756 if (isa<SCEVCouldNotCompute>(ExitValue) ||
1757 !SE->isLoopInvariant(ExitValue, L) ||
1758 !Rewriter.isSafeToExpand(ExitValue)) {
1759 // TODO: This should probably be sunk into SCEV in some way; maybe a
1760 // getSCEVForExit(SCEV*, L, ExitingBB)? It can be generalized for
1761 // most SCEV expressions and other recurrence types (e.g. shift
1762 // recurrences). Is there existing code we can reuse?
1763 const SCEV *ExitCount = SE->getExitCount(L, PN->getIncomingBlock(i));
1764 if (isa<SCEVCouldNotCompute>(ExitCount))
1765 continue;
1766 if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Inst)))
1767 if (AddRec->getLoop() == L)
1768 ExitValue = AddRec->evaluateAtIteration(ExitCount, *SE);
1769 if (isa<SCEVCouldNotCompute>(ExitValue) ||
1770 !SE->isLoopInvariant(ExitValue, L) ||
1771 !Rewriter.isSafeToExpand(ExitValue))
1772 continue;
1773 }
1774
1775 // Computing the value outside of the loop brings no benefit if it is
1776 // definitely used inside the loop in a way which can not be optimized
1777 // away. Avoid doing so unless we know we have a value which computes
1778 // the ExitValue already. TODO: This should be merged into SCEV
1779 // expander to leverage its knowledge of existing expressions.
1780 if (ReplaceExitValue != AlwaysRepl && !isa<SCEVConstant>(ExitValue) &&
1781 !isa<SCEVUnknown>(ExitValue) && hasHardUserWithinLoop(L, Inst))
1782 continue;
1783
1784 // Check if expansions of this SCEV would count as being high cost.
1785 bool HighCost = Rewriter.isHighCostExpansion(
1786 ExitValue, L, SCEVCheapExpansionBudget, TTI, Inst);
1787
1788 // Note that we must not perform expansions until after
1789 // we query *all* the costs, because if we perform temporary expansion
1790 // inbetween, one that we might not intend to keep, said expansion
1791 // *may* affect cost calculation of the next SCEV's we'll query,
1792 // and next SCEV may errneously get smaller cost.
1793
1794 // Collect all the candidate PHINodes to be rewritten.
1795 Instruction *InsertPt =
1796 (isa<PHINode>(Inst) || isa<LandingPadInst>(Inst)) ?
1797 &*Inst->getParent()->getFirstInsertionPt() : Inst;
1798 RewritePhiSet.emplace_back(PN, i, ExitValue, InsertPt, HighCost);
1799 }
1800 }
1801 }
1802
1803 // TODO: evaluate whether it is beneficial to change how we calculate
1804 // high-cost: if we have SCEV 'A' which we know we will expand, should we
1805 // calculate the cost of other SCEV's after expanding SCEV 'A', thus
1806 // potentially giving cost bonus to those other SCEV's?
1807
1808 bool LoopCanBeDel = canLoopBeDeleted(L, RewritePhiSet);
1809 int NumReplaced = 0;
1810
1811 // Transformation.
1812 for (const RewritePhi &Phi : RewritePhiSet) {
1813 PHINode *PN = Phi.PN;
1814
1815 // Only do the rewrite when the ExitValue can be expanded cheaply.
1816 // If LoopCanBeDel is true, rewrite exit value aggressively.
1819 !LoopCanBeDel && Phi.HighCost)
1820 continue;
1821
1822 Value *ExitVal = Rewriter.expandCodeFor(
1823 Phi.ExpansionSCEV, Phi.PN->getType(), Phi.ExpansionPoint);
1824
1825 LLVM_DEBUG(dbgs() << "rewriteLoopExitValues: AfterLoopVal = " << *ExitVal
1826 << '\n'
1827 << " LoopVal = " << *(Phi.ExpansionPoint) << "\n");
1828
1829#ifndef NDEBUG
1830 // If we reuse an instruction from a loop which is neither L nor one of
1831 // its containing loops, we end up breaking LCSSA form for this loop by
1832 // creating a new use of its instruction.
1833 if (auto *ExitInsn = dyn_cast<Instruction>(ExitVal))
1834 if (auto *EVL = LI->getLoopFor(ExitInsn->getParent()))
1835 if (EVL != L)
1836 assert(EVL->contains(L) && "LCSSA breach detected!");
1837#endif
1838
1839 NumReplaced++;
1840 Instruction *Inst = cast<Instruction>(PN->getIncomingValue(Phi.Ith));
1841 PN->setIncomingValue(Phi.Ith, ExitVal);
1842 // It's necessary to tell ScalarEvolution about this explicitly so that
1843 // it can walk the def-use list and forget all SCEVs, as it may not be
1844 // watching the PHI itself. Once the new exit value is in place, there
1845 // may not be a def-use connection between the loop and every instruction
1846 // which got a SCEVAddRecExpr for that loop.
1847 SE->forgetValue(PN);
1848
1849 // If this instruction is dead now, delete it. Don't do it now to avoid
1850 // invalidating iterators.
1851 if (isInstructionTriviallyDead(Inst, TLI))
1852 DeadInsts.push_back(Inst);
1853
1854 // Replace PN with ExitVal if that is legal and does not break LCSSA.
1855 if (PN->getNumIncomingValues() == 1 &&
1856 LI->replacementPreservesLCSSAForm(PN, ExitVal)) {
1857 PN->replaceAllUsesWith(ExitVal);
1858 PN->eraseFromParent();
1859 }
1860 }
1861
1862 // The insertion point instruction may have been deleted; clear it out
1863 // so that the rewriter doesn't trip over it later.
1864 Rewriter.clearInsertPoint();
1865 return NumReplaced;
1866}
1867
1868/// Set weights for \p UnrolledLoop and \p RemainderLoop based on weights for
1869/// \p OrigLoop.
1870void llvm::setProfileInfoAfterUnrolling(Loop *OrigLoop, Loop *UnrolledLoop,
1871 Loop *RemainderLoop, uint64_t UF) {
1872 assert(UF > 0 && "Zero unrolled factor is not supported");
1873 assert(UnrolledLoop != RemainderLoop &&
1874 "Unrolled and Remainder loops are expected to distinct");
1875
1876 // Get number of iterations in the original scalar loop.
1877 unsigned OrigLoopInvocationWeight = 0;
1878 std::optional<unsigned> OrigAverageTripCount =
1879 getLoopEstimatedTripCount(OrigLoop, &OrigLoopInvocationWeight);
1880 if (!OrigAverageTripCount)
1881 return;
1882
1883 // Calculate number of iterations in unrolled loop.
1884 unsigned UnrolledAverageTripCount = *OrigAverageTripCount / UF;
1885 // Calculate number of iterations for remainder loop.
1886 unsigned RemainderAverageTripCount = *OrigAverageTripCount % UF;
1887
1888 setLoopEstimatedTripCount(UnrolledLoop, UnrolledAverageTripCount,
1889 OrigLoopInvocationWeight);
1890 setLoopEstimatedTripCount(RemainderLoop, RemainderAverageTripCount,
1891 OrigLoopInvocationWeight);
1892}
1893
1894/// Utility that implements appending of loops onto a worklist.
1895/// Loops are added in preorder (analogous for reverse postorder for trees),
1896/// and the worklist is processed LIFO.
1897template <typename RangeT>
1899 RangeT &&Loops, SmallPriorityWorklist<Loop *, 4> &Worklist) {
1900 // We use an internal worklist to build up the preorder traversal without
1901 // recursion.
1902 SmallVector<Loop *, 4> PreOrderLoops, PreOrderWorklist;
1903
1904 // We walk the initial sequence of loops in reverse because we generally want
1905 // to visit defs before uses and the worklist is LIFO.
1906 for (Loop *RootL : Loops) {
1907 assert(PreOrderLoops.empty() && "Must start with an empty preorder walk.");
1908 assert(PreOrderWorklist.empty() &&
1909 "Must start with an empty preorder walk worklist.");
1910 PreOrderWorklist.push_back(RootL);
1911 do {
1912 Loop *L = PreOrderWorklist.pop_back_val();
1913 PreOrderWorklist.append(L->begin(), L->end());
1914 PreOrderLoops.push_back(L);
1915 } while (!PreOrderWorklist.empty());
1916
1917 Worklist.insert(std::move(PreOrderLoops));
1918 PreOrderLoops.clear();
1919 }
1920}
1921
1922template <typename RangeT>
1926}
1927
1928template LLVM_EXPORT_TEMPLATE void
1931
1932template LLVM_EXPORT_TEMPLATE void
1935
1940
1942 LoopInfo *LI, LPPassManager *LPM) {
1943 Loop &New = *LI->AllocateLoop();
1944 if (PL)
1945 PL->addChildLoop(&New);
1946 else
1947 LI->addTopLevelLoop(&New);
1948
1949 if (LPM)
1950 LPM->addLoop(New);
1951
1952 // Add all of the blocks in L to the new loop.
1953 for (BasicBlock *BB : L->blocks())
1954 if (LI->getLoopFor(BB) == L)
1955 New.addBasicBlockToLoop(cast<BasicBlock>(VM[BB]), *LI);
1956
1957 // Add all of the subloops to the new loop.
1958 for (Loop *I : *L)
1959 cloneLoop(I, &New, VM, LI, LPM);
1960
1961 return &New;
1962}
1963
1964/// IR Values for the lower and upper bounds of a pointer evolution. We
1965/// need to use value-handles because SCEV expansion can invalidate previously
1966/// expanded values. Thus expansion of a pointer can invalidate the bounds for
1967/// a previous one.
1973
1974/// Expand code for the lower and upper bound of the pointer group \p CG
1975/// in \p TheLoop. \return the values for the bounds.
1977 Loop *TheLoop, Instruction *Loc,
1978 SCEVExpander &Exp, bool HoistRuntimeChecks) {
1979 LLVMContext &Ctx = Loc->getContext();
1980 Type *PtrArithTy = PointerType::get(Ctx, CG->AddressSpace);
1981
1982 Value *Start = nullptr, *End = nullptr;
1983 LLVM_DEBUG(dbgs() << "LAA: Adding RT check for range:\n");
1984 const SCEV *Low = CG->Low, *High = CG->High, *Stride = nullptr;
1985
1986 // If the Low and High values are themselves loop-variant, then we may want
1987 // to expand the range to include those covered by the outer loop as well.
1988 // There is a trade-off here with the advantage being that creating checks
1989 // using the expanded range permits the runtime memory checks to be hoisted
1990 // out of the outer loop. This reduces the cost of entering the inner loop,
1991 // which can be significant for low trip counts. The disadvantage is that
1992 // there is a chance we may now never enter the vectorized inner loop,
1993 // whereas using a restricted range check could have allowed us to enter at
1994 // least once. This is why the behaviour is not currently the default and is
1995 // controlled by the parameter 'HoistRuntimeChecks'.
1996 if (HoistRuntimeChecks && TheLoop->getParentLoop() &&
1998 auto *HighAR = cast<SCEVAddRecExpr>(High);
1999 auto *LowAR = cast<SCEVAddRecExpr>(Low);
2000 const Loop *OuterLoop = TheLoop->getParentLoop();
2001 ScalarEvolution &SE = *Exp.getSE();
2002 const SCEV *Recur = LowAR->getStepRecurrence(SE);
2003 if (Recur == HighAR->getStepRecurrence(SE) &&
2004 HighAR->getLoop() == OuterLoop && LowAR->getLoop() == OuterLoop) {
2005 BasicBlock *OuterLoopLatch = OuterLoop->getLoopLatch();
2006 const SCEV *OuterExitCount = SE.getExitCount(OuterLoop, OuterLoopLatch);
2007 if (!isa<SCEVCouldNotCompute>(OuterExitCount) &&
2008 OuterExitCount->getType()->isIntegerTy()) {
2009 const SCEV *NewHigh =
2010 cast<SCEVAddRecExpr>(High)->evaluateAtIteration(OuterExitCount, SE);
2011 if (!isa<SCEVCouldNotCompute>(NewHigh)) {
2012 LLVM_DEBUG(dbgs() << "LAA: Expanded RT check for range to include "
2013 "outer loop in order to permit hoisting\n");
2014 High = NewHigh;
2015 Low = cast<SCEVAddRecExpr>(Low)->getStart();
2016 // If there is a possibility that the stride is negative then we have
2017 // to generate extra checks to ensure the stride is positive.
2018 if (!SE.isKnownNonNegative(
2019 SE.applyLoopGuards(Recur, HighAR->getLoop()))) {
2020 Stride = Recur;
2021 LLVM_DEBUG(dbgs() << "LAA: ... but need to check stride is "
2022 "positive: "
2023 << *Stride << '\n');
2024 }
2025 }
2026 }
2027 }
2028 }
2029
2030 Start = Exp.expandCodeFor(Low, PtrArithTy, Loc);
2031 End = Exp.expandCodeFor(High, PtrArithTy, Loc);
2032 if (CG->NeedsFreeze) {
2033 IRBuilder<> Builder(Loc);
2034 Start = Builder.CreateFreeze(Start, Start->getName() + ".fr");
2035 End = Builder.CreateFreeze(End, End->getName() + ".fr");
2036 }
2037 Value *StrideVal =
2038 Stride ? Exp.expandCodeFor(Stride, Stride->getType(), Loc) : nullptr;
2039 LLVM_DEBUG(dbgs() << "Start: " << *Low << " End: " << *High << "\n");
2040 return {Start, End, StrideVal};
2041}
2042
2043/// Turns a collection of checks into a collection of expanded upper and
2044/// lower bounds for both pointers in the check.
2049
2050 // Here we're relying on the SCEV Expander's cache to only emit code for the
2051 // same bounds once.
2052 transform(PointerChecks, std::back_inserter(ChecksWithBounds),
2053 [&](const RuntimePointerCheck &Check) {
2054 PointerBounds First = expandBounds(Check.first, L, Loc, Exp,
2056 Second = expandBounds(Check.second, L, Loc, Exp,
2058 return std::make_pair(First, Second);
2059 });
2060
2061 return ChecksWithBounds;
2062}
2063
2065 Instruction *Loc, Loop *TheLoop,
2066 const SmallVectorImpl<RuntimePointerCheck> &PointerChecks,
2067 SCEVExpander &Exp, bool HoistRuntimeChecks) {
2068 // TODO: Move noalias annotation code from LoopVersioning here and share with LV if possible.
2069 // TODO: Pass RtPtrChecking instead of PointerChecks and SE separately, if possible
2070 auto ExpandedChecks =
2071 expandBounds(PointerChecks, TheLoop, Loc, Exp, HoistRuntimeChecks);
2072
2073 LLVMContext &Ctx = Loc->getContext();
2074 IRBuilder ChkBuilder(Ctx, InstSimplifyFolder(Loc->getDataLayout()));
2075 ChkBuilder.SetInsertPoint(Loc);
2076 // Our instructions might fold to a constant.
2077 Value *MemoryRuntimeCheck = nullptr;
2078
2079 for (const auto &[A, B] : ExpandedChecks) {
2080 // Check if two pointers (A and B) conflict where conflict is computed as:
2081 // start(A) <= end(B) && start(B) <= end(A)
2082
2083 assert((A.Start->getType()->getPointerAddressSpace() ==
2084 B.End->getType()->getPointerAddressSpace()) &&
2085 (B.Start->getType()->getPointerAddressSpace() ==
2086 A.End->getType()->getPointerAddressSpace()) &&
2087 "Trying to bounds check pointers with different address spaces");
2088
2089 // [A|B].Start points to the first accessed byte under base [A|B].
2090 // [A|B].End points to the last accessed byte, plus one.
2091 // There is no conflict when the intervals are disjoint:
2092 // NoConflict = (B.Start >= A.End) || (A.Start >= B.End)
2093 //
2094 // bound0 = (B.Start < A.End)
2095 // bound1 = (A.Start < B.End)
2096 // IsConflict = bound0 & bound1
2097 Value *Cmp0 = ChkBuilder.CreateICmpULT(A.Start, B.End, "bound0");
2098 Value *Cmp1 = ChkBuilder.CreateICmpULT(B.Start, A.End, "bound1");
2099 Value *IsConflict = ChkBuilder.CreateAnd(Cmp0, Cmp1, "found.conflict");
2100 if (A.StrideToCheck) {
2101 Value *IsNegativeStride = ChkBuilder.CreateICmpSLT(
2102 A.StrideToCheck, ConstantInt::get(A.StrideToCheck->getType(), 0),
2103 "stride.check");
2104 IsConflict = ChkBuilder.CreateOr(IsConflict, IsNegativeStride);
2105 }
2106 if (B.StrideToCheck) {
2107 Value *IsNegativeStride = ChkBuilder.CreateICmpSLT(
2108 B.StrideToCheck, ConstantInt::get(B.StrideToCheck->getType(), 0),
2109 "stride.check");
2110 IsConflict = ChkBuilder.CreateOr(IsConflict, IsNegativeStride);
2111 }
2112 if (MemoryRuntimeCheck) {
2113 IsConflict =
2114 ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict, "conflict.rdx");
2115 }
2116 MemoryRuntimeCheck = IsConflict;
2117 }
2118
2119 Exp.eraseDeadInstructions(MemoryRuntimeCheck);
2120 return MemoryRuntimeCheck;
2121}
2122
2125 function_ref<Value *(IRBuilderBase &, unsigned)> GetVF, unsigned IC) {
2126
2127 LLVMContext &Ctx = Loc->getContext();
2128 IRBuilder ChkBuilder(Ctx, InstSimplifyFolder(Loc->getDataLayout()));
2129 ChkBuilder.SetInsertPoint(Loc);
2130 // Our instructions might fold to a constant.
2131 Value *MemoryRuntimeCheck = nullptr;
2132
2133 auto &SE = *Expander.getSE();
2134 // Map to keep track of created compares, The key is the pair of operands for
2135 // the compare, to allow detecting and re-using redundant compares.
2137 for (const auto &[SrcStart, SinkStart, AccessSize, NeedsFreeze] : Checks) {
2138 Type *Ty = SinkStart->getType();
2139 // Compute VF * IC * AccessSize.
2140 auto *VFTimesICTimesSize =
2141 ChkBuilder.CreateMul(GetVF(ChkBuilder, Ty->getScalarSizeInBits()),
2142 ConstantInt::get(Ty, IC * AccessSize));
2143 Value *Diff =
2144 Expander.expandCodeFor(SE.getMinusSCEV(SinkStart, SrcStart), Ty, Loc);
2145
2146 // Check if the same compare has already been created earlier. In that case,
2147 // there is no need to check it again.
2148 Value *IsConflict = SeenCompares.lookup({Diff, VFTimesICTimesSize});
2149 if (IsConflict)
2150 continue;
2151
2152 IsConflict =
2153 ChkBuilder.CreateICmpULT(Diff, VFTimesICTimesSize, "diff.check");
2154 SeenCompares.insert({{Diff, VFTimesICTimesSize}, IsConflict});
2155 if (NeedsFreeze)
2156 IsConflict =
2157 ChkBuilder.CreateFreeze(IsConflict, IsConflict->getName() + ".fr");
2158 if (MemoryRuntimeCheck) {
2159 IsConflict =
2160 ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict, "conflict.rdx");
2161 }
2162 MemoryRuntimeCheck = IsConflict;
2163 }
2164
2165 Expander.eraseDeadInstructions(MemoryRuntimeCheck);
2166 return MemoryRuntimeCheck;
2167}
2168
2169std::optional<IVConditionInfo>
2171 const MemorySSA &MSSA, AAResults &AA) {
2172 auto *TI = dyn_cast<BranchInst>(L.getHeader()->getTerminator());
2173 if (!TI || !TI->isConditional())
2174 return {};
2175
2176 auto *CondI = dyn_cast<Instruction>(TI->getCondition());
2177 // The case with the condition outside the loop should already be handled
2178 // earlier.
2179 // Allow CmpInst and TruncInsts as they may be users of load instructions
2180 // and have potential for partial unswitching
2181 if (!CondI || !isa<CmpInst, TruncInst>(CondI) || !L.contains(CondI))
2182 return {};
2183
2184 SmallVector<Instruction *> InstToDuplicate;
2185 InstToDuplicate.push_back(CondI);
2186
2187 SmallVector<Value *, 4> WorkList;
2188 WorkList.append(CondI->op_begin(), CondI->op_end());
2189
2190 SmallVector<MemoryAccess *, 4> AccessesToCheck;
2191 SmallVector<MemoryLocation, 4> AccessedLocs;
2192 while (!WorkList.empty()) {
2194 if (!I || !L.contains(I))
2195 continue;
2196
2197 // TODO: support additional instructions.
2199 return {};
2200
2201 // Do not duplicate volatile and atomic loads.
2202 if (auto *LI = dyn_cast<LoadInst>(I))
2203 if (LI->isVolatile() || LI->isAtomic())
2204 return {};
2205
2206 InstToDuplicate.push_back(I);
2207 if (MemoryAccess *MA = MSSA.getMemoryAccess(I)) {
2208 if (auto *MemUse = dyn_cast_or_null<MemoryUse>(MA)) {
2209 // Queue the defining access to check for alias checks.
2210 AccessesToCheck.push_back(MemUse->getDefiningAccess());
2211 AccessedLocs.push_back(MemoryLocation::get(I));
2212 } else {
2213 // MemoryDefs may clobber the location or may be atomic memory
2214 // operations. Bail out.
2215 return {};
2216 }
2217 }
2218 WorkList.append(I->op_begin(), I->op_end());
2219 }
2220
2221 if (InstToDuplicate.empty())
2222 return {};
2223
2224 SmallVector<BasicBlock *, 4> ExitingBlocks;
2225 L.getExitingBlocks(ExitingBlocks);
2226 auto HasNoClobbersOnPath =
2227 [&L, &AA, &AccessedLocs, &ExitingBlocks, &InstToDuplicate,
2228 MSSAThreshold](BasicBlock *Succ, BasicBlock *Header,
2229 SmallVector<MemoryAccess *, 4> AccessesToCheck)
2230 -> std::optional<IVConditionInfo> {
2231 IVConditionInfo Info;
2232 // First, collect all blocks in the loop that are on a patch from Succ
2233 // to the header.
2235 WorkList.push_back(Succ);
2236 WorkList.push_back(Header);
2238 Seen.insert(Header);
2239 Info.PathIsNoop &=
2240 all_of(*Header, [](Instruction &I) { return !I.mayHaveSideEffects(); });
2241
2242 while (!WorkList.empty()) {
2243 BasicBlock *Current = WorkList.pop_back_val();
2244 if (!L.contains(Current))
2245 continue;
2246 const auto &SeenIns = Seen.insert(Current);
2247 if (!SeenIns.second)
2248 continue;
2249
2250 Info.PathIsNoop &= all_of(
2251 *Current, [](Instruction &I) { return !I.mayHaveSideEffects(); });
2252 WorkList.append(succ_begin(Current), succ_end(Current));
2253 }
2254
2255 // Require at least 2 blocks on a path through the loop. This skips
2256 // paths that directly exit the loop.
2257 if (Seen.size() < 2)
2258 return {};
2259
2260 // Next, check if there are any MemoryDefs that are on the path through
2261 // the loop (in the Seen set) and they may-alias any of the locations in
2262 // AccessedLocs. If that is the case, they may modify the condition and
2263 // partial unswitching is not possible.
2264 SmallPtrSet<MemoryAccess *, 4> SeenAccesses;
2265 while (!AccessesToCheck.empty()) {
2266 MemoryAccess *Current = AccessesToCheck.pop_back_val();
2267 auto SeenI = SeenAccesses.insert(Current);
2268 if (!SeenI.second || !Seen.contains(Current->getBlock()))
2269 continue;
2270
2271 // Bail out if exceeded the threshold.
2272 if (SeenAccesses.size() >= MSSAThreshold)
2273 return {};
2274
2275 // MemoryUse are read-only accesses.
2276 if (isa<MemoryUse>(Current))
2277 continue;
2278
2279 // For a MemoryDef, check if is aliases any of the location feeding
2280 // the original condition.
2281 if (auto *CurrentDef = dyn_cast<MemoryDef>(Current)) {
2282 if (any_of(AccessedLocs, [&AA, CurrentDef](MemoryLocation &Loc) {
2283 return isModSet(
2284 AA.getModRefInfo(CurrentDef->getMemoryInst(), Loc));
2285 }))
2286 return {};
2287 }
2288
2289 for (Use &U : Current->uses())
2290 AccessesToCheck.push_back(cast<MemoryAccess>(U.getUser()));
2291 }
2292
2293 // We could also allow loops with known trip counts without mustprogress,
2294 // but ScalarEvolution may not be available.
2295 Info.PathIsNoop &= isMustProgress(&L);
2296
2297 // If the path is considered a no-op so far, check if it reaches a
2298 // single exit block without any phis. This ensures no values from the
2299 // loop are used outside of the loop.
2300 if (Info.PathIsNoop) {
2301 for (auto *Exiting : ExitingBlocks) {
2302 if (!Seen.contains(Exiting))
2303 continue;
2304 for (auto *Succ : successors(Exiting)) {
2305 if (L.contains(Succ))
2306 continue;
2307
2308 Info.PathIsNoop &= Succ->phis().empty() &&
2309 (!Info.ExitForPath || Info.ExitForPath == Succ);
2310 if (!Info.PathIsNoop)
2311 break;
2312 assert((!Info.ExitForPath || Info.ExitForPath == Succ) &&
2313 "cannot have multiple exit blocks");
2314 Info.ExitForPath = Succ;
2315 }
2316 }
2317 }
2318 if (!Info.ExitForPath)
2319 Info.PathIsNoop = false;
2320
2321 Info.InstToDuplicate = InstToDuplicate;
2322 return Info;
2323 };
2324
2325 // If we branch to the same successor, partial unswitching will not be
2326 // beneficial.
2327 if (TI->getSuccessor(0) == TI->getSuccessor(1))
2328 return {};
2329
2330 if (auto Info = HasNoClobbersOnPath(TI->getSuccessor(0), L.getHeader(),
2331 AccessesToCheck)) {
2332 Info->KnownValue = ConstantInt::getTrue(TI->getContext());
2333 return Info;
2334 }
2335 if (auto Info = HasNoClobbersOnPath(TI->getSuccessor(1), L.getHeader(),
2336 AccessesToCheck)) {
2337 Info->KnownValue = ConstantInt::getFalse(TI->getContext());
2338 return Info;
2339 }
2340
2341 return {};
2342}
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
AMDGPU Register Bank Select
This is the interface for LLVM's primary stateless and local alias analysis.
bbsections Prepares for basic block by splitting functions into clusters of basic blocks
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< StatepointGC > D("statepoint-example", "an example strategy for statepoint")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
#define LLVM_EXPORT_TEMPLATE
Definition Compiler.h:215
This file defines the DenseSet and SmallDenseSet classes.
#define Check(C,...)
This is the interface for a simple mod/ref and alias analysis over globals.
static const HTTPClientCleanup Cleanup
Hexagon Hardware Loops
Module.h This file contains the declarations for the Module class.
iv Induction Variable Users
Definition IVUsers.cpp:48
static cl::opt< ReplaceExitVal > ReplaceExitValue("replexitval", cl::Hidden, cl::init(OnlyCheapRepl), cl::desc("Choose the strategy to replace exit value in IndVarSimplify"), cl::values(clEnumValN(NeverRepl, "never", "never replace exit value"), clEnumValN(OnlyCheapRepl, "cheap", "only replace exit value when the cost is cheap"), clEnumValN(UnusedIndVarInLoop, "unusedindvarinloop", "only replace exit value when it is an unused " "induction variable in the loop and has cheap replacement cost"), clEnumValN(NoHardUse, "noharduse", "only replace exit values when loop def likely dead"), clEnumValN(AlwaysRepl, "always", "always replace exit value whenever possible")))
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
static cl::opt< bool, true > HoistRuntimeChecks("hoist-runtime-checks", cl::Hidden, cl::desc("Hoist inner loop runtime memory checks to outer loop if possible"), cl::location(VectorizerParams::HoistRuntimeChecks), cl::init(true))
static bool hasHardUserWithinLoop(const Loop *L, const Instruction *I)
static const char * LLVMLoopDisableLICM
Definition LoopUtils.cpp:56
static PointerBounds expandBounds(const RuntimeCheckingPtrGroup *CG, Loop *TheLoop, Instruction *Loc, SCEVExpander &Exp, bool HoistRuntimeChecks)
Expand code for the lower and upper bound of the pointer group CG in TheLoop.
static bool canLoopBeDeleted(Loop *L, SmallVector< RewritePhi, 8 > &RewritePhiSet)
static const char * LLVMLoopDisableNonforced
Definition LoopUtils.cpp:55
static MDNode * createStringMetadata(Loop *TheLoop, StringRef Name, unsigned V)
Create MDNode for input string.
static BranchInst * getExpectedExitLoopLatchBranch(Loop *L)
Checks if L has an exiting latch branch.
static std::optional< unsigned > estimateLoopTripCount(Loop *L)
static bool checkIsIndPhi(PHINode *Phi, Loop *L, ScalarEvolution *SE, InductionDescriptor &ID)
Checks if it is safe to call InductionDescriptor::isInductionPHI for Phi, and returns true if this Ph...
#define I(x, y, z)
Definition MD5.cpp:58
#define H(x, y, z)
Definition MD5.cpp:57
This file exposes an interface to building/using memory SSA to walk memory instructions using a use/d...
uint64_t High
#define P(N)
#define INITIALIZE_PASS_DEPENDENCY(depName)
Definition PassSupport.h:42
This file provides a priority worklist.
This file contains the declarations for profiling metadata utility functions.
const SmallVectorImpl< MachineOperand > & Cond
This is the interface for a SCEV-based alias analysis.
This file defines the make_scope_exit function, which executes user-defined cleanup logic at scope ex...
This file implements a set that has insertion order iteration characteristics.
static cl::opt< unsigned > MSSAThreshold("simple-loop-unswitch-memoryssa-threshold", cl::desc("Max number of memory uses to explore during " "partial unswitching analysis"), cl::init(100), cl::Hidden)
This file defines the SmallPtrSet class.
This file defines the SmallVector class.
#define LLVM_DEBUG(...)
Definition Debug.h:114
A wrapper pass to provide the legacy pass manager access to a suitably prepared AAResults object.
static APFloat getLargest(const fltSemantics &Sem, bool Negative=false)
Returns the largest finite number in the given semantics.
Definition APFloat.h:1138
Class for arbitrary precision integers.
Definition APInt.h:78
static APInt getMaxValue(unsigned numBits)
Gets maximum unsigned value of APInt for specific bit width.
Definition APInt.h:206
static APInt getSignedMaxValue(unsigned numBits)
Gets maximum signed value of APInt for a specific bit width.
Definition APInt.h:209
static APInt getMinValue(unsigned numBits)
Gets minimum unsigned value of APInt for a specific bit width.
Definition APInt.h:216
static APInt getSignedMinValue(unsigned numBits)
Gets minimum signed value of APInt for a specific bit width.
Definition APInt.h:219
Represent the analysis usage information of a pass.
LLVM_ABI AnalysisUsage & addRequiredID(const void *ID)
Definition Pass.cpp:284
AnalysisUsage & addPreservedID(const void *ID)
AnalysisUsage & addRequired()
AnalysisUsage & addPreserved()
Add the specified Pass class to the set of analyses preserved by this pass.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition ArrayRef.h:41
Legacy wrapper pass to provide the BasicAAResult object.
LLVM Basic Block Representation.
Definition BasicBlock.h:62
iterator begin()
Instruction iterator methods.
Definition BasicBlock.h:459
InstListType::iterator iterator
Instruction iterators...
Definition BasicBlock.h:170
LLVM_ABI LLVMContext & getContext() const
Get the context in which this basic block lives.
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
Definition BasicBlock.h:233
Conditional or Unconditional Branch instruction.
unsigned getNumSuccessors() const
BasicBlock * getSuccessor(unsigned i) const
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
Definition InstrTypes.h:678
@ ICMP_SLT
signed less than
Definition InstrTypes.h:707
@ ICMP_SLE
signed less or equal
Definition InstrTypes.h:708
@ FCMP_OLT
0 1 0 0 True if ordered and less than
Definition InstrTypes.h:684
@ FCMP_OGT
0 0 1 0 True if ordered and greater than
Definition InstrTypes.h:682
@ ICMP_UGT
unsigned greater than
Definition InstrTypes.h:701
@ ICMP_SGT
signed greater than
Definition InstrTypes.h:705
@ ICMP_ULT
unsigned less than
Definition InstrTypes.h:703
@ ICMP_NE
not equal
Definition InstrTypes.h:700
@ ICMP_SGE
signed greater or equal
Definition InstrTypes.h:706
static ConstantAsMetadata * get(Constant *C)
Definition Metadata.h:535
static LLVM_ABI Constant * getIntrinsicIdentity(Intrinsic::ID, Type *Ty)
static LLVM_ABI Constant * getBinOpIdentity(unsigned Opcode, Type *Ty, bool AllowRHSConstant=false, bool NSZ=false)
Return the identity constant for a binary opcode.
static LLVM_ABI Constant * getInfinity(Type *Ty, bool Negative=false)
static LLVM_ABI Constant * getQNaN(Type *Ty, bool Negative=false, APInt *Payload=nullptr)
This is the shared class of boolean and integer constants.
Definition Constants.h:87
static LLVM_ABI ConstantInt * getTrue(LLVMContext &Context)
static LLVM_ABI ConstantInt * getFalse(LLVMContext &Context)
int64_t getSExtValue() const
Return the constant as a 64-bit integer value after it has been sign extended as appropriate for the ...
Definition Constants.h:169
Record of a variable value-assignment, aka a non instruction representation of the dbg....
Identifies a unique instance of a variable.
ValueT lookup(const_arg_type_t< KeyT > Val) const
lookup - Return the entry for the specified key, or a default constructed value if no such entry exis...
Definition DenseMap.h:187
std::pair< iterator, bool > insert(const std::pair< KeyT, ValueT > &KV)
Definition DenseMap.h:214
iterator_range< iterator > children()
DomTreeNodeBase< NodeT > * getNode(const NodeT *BB) const
getNode - return the (Post)DominatorTree node for the specified basic block.
Legacy analysis pass which computes a DominatorTree.
Definition Dominators.h:322
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
Definition Dominators.h:165
LLVM_ABI bool isReachableFromEntry(const Use &U) const
Provide an overload for a Use.
static constexpr ElementCount get(ScalarTy MinVal, bool Scalable)
Definition TypeSize.h:315
Convenience struct for specifying and reasoning about fast-math flags.
Definition FMF.h:22
bool noSignedZeros() const
Definition FMF.h:67
bool noNaNs() const
Definition FMF.h:65
void applyUpdates(ArrayRef< UpdateT > Updates)
Submit updates to all available trees.
Legacy wrapper pass to provide the GlobalsAAResult object.
Common base class shared among various IRBuilders.
Definition IRBuilder.h:114
Value * CreateICmpULT(Value *LHS, Value *RHS, const Twine &Name="")
Definition IRBuilder.h:2345
Value * CreateFreeze(Value *V, const Twine &Name="")
Definition IRBuilder.h:2637
Value * CreateAnd(Value *LHS, Value *RHS, const Twine &Name="")
Definition IRBuilder.h:1551
Value * CreateICmpSLT(Value *LHS, Value *RHS, const Twine &Name="")
Definition IRBuilder.h:2361
void SetInsertPoint(BasicBlock *TheBB)
This specifies that created instructions should be appended to the end of the specified block.
Definition IRBuilder.h:207
Value * CreateOr(Value *LHS, Value *RHS, const Twine &Name="", bool IsDisjoint=false)
Definition IRBuilder.h:1573
Value * CreateMul(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
Definition IRBuilder.h:1437
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
Definition IRBuilder.h:2780
A struct for saving information about induction variables.
static LLVM_ABI bool isInductionPHI(PHINode *Phi, const Loop *L, ScalarEvolution *SE, InductionDescriptor &D, const SCEV *Expr=nullptr, SmallVectorImpl< Instruction * > *CastsToIgnore=nullptr)
Returns true if Phi is an induction in the loop L.
InstSimplifyFolder - Use InstructionSimplify to fold operations to existing values.
LLVM_ABI unsigned getNumSuccessors() const LLVM_READONLY
Return the number of successors that this instruction has.
LLVM_ABI InstListType::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
LLVM_ABI bool mayHaveSideEffects() const LLVM_READONLY
Return true if the instruction may have side effects.
LLVM_ABI void setMetadata(unsigned KindID, MDNode *Node)
Set the metadata of the specified kind to the specified node.
This is an important class for using LLVM in a threaded context.
Definition LLVMContext.h:68
void addLoop(Loop &L)
Definition LoopPass.cpp:77
bool contains(const LoopT *L) const
Return true if the specified loop is contained within in this loop.
BlockT * getLoopLatch() const
If there is a single latch block for this loop, return it.
BlockT * getHeader() const
std::vector< Loop * >::const_iterator iterator
LoopT * getParentLoop() const
Return the parent loop if it exists or nullptr for top level loops.
void addTopLevelLoop(LoopT *New)
This adds the specified loop to the collection of top-level loops.
iterator end() const
void removeBlock(BlockT *BB)
This method completely removes BB from all data structures, including all of the Loop objects it is n...
LoopT * AllocateLoop(ArgsTy &&...Args)
LoopT * removeLoop(iterator I)
This removes the specified top-level loop from this loop info object.
LoopT * getLoopFor(const BlockT *BB) const
Return the inner most loop that BB lives in.
void destroy(LoopT *L)
Destroy a loop that has been removed from the LoopInfo nest.
The legacy pass manager's analysis pass to compute loop information.
Definition LoopInfo.h:596
bool replacementPreservesLCSSAForm(Instruction *From, Value *To)
Returns true if replacing From with To everywhere is guaranteed to preserve LCSSA form.
Definition LoopInfo.h:441
LLVM_ABI void erase(Loop *L)
Update LoopInfo after removing the last backedge from a loop.
Definition LoopInfo.cpp:887
Represents a single loop in the control flow graph.
Definition LoopInfo.h:40
void setLoopID(MDNode *LoopID) const
Set the llvm.loop loop id metadata for this loop.
Definition LoopInfo.cpp:526
MDNode * getLoopID() const
Return the llvm.loop loop id metadata node for this loop if it is present.
Definition LoopInfo.cpp:502
LLVM_ABI MDNode * createBranchWeights(uint32_t TrueWeight, uint32_t FalseWeight, bool IsExpected=false)
Return metadata containing two branch weights.
Definition MDBuilder.cpp:38
Metadata node.
Definition Metadata.h:1077
LLVM_ABI void replaceOperandWith(unsigned I, Metadata *New)
Replace a specific operand.
const MDOperand & getOperand(unsigned I) const
Definition Metadata.h:1445
ArrayRef< MDOperand > operands() const
Definition Metadata.h:1443
static MDTuple * get(LLVMContext &Context, ArrayRef< Metadata * > MDs)
Definition Metadata.h:1565
unsigned getNumOperands() const
Return number of MDNode operands.
Definition Metadata.h:1451
LLVMContext & getContext() const
Definition Metadata.h:1241
Tracking metadata reference owned by Metadata.
Definition Metadata.h:899
A single uniqued string.
Definition Metadata.h:720
LLVM_ABI StringRef getString() const
Definition Metadata.cpp:617
static LLVM_ABI MDString * get(LLVMContext &Context, StringRef Str)
Definition Metadata.cpp:607
Tuple of metadata.
Definition Metadata.h:1493
BasicBlock * getBlock() const
Definition MemorySSA.h:162
Representation for a specific memory location.
static LLVM_ABI MemoryLocation get(const LoadInst *LI)
Return a location with information about the memory reference by the given instruction.
Legacy analysis pass which computes MemorySSA.
Definition MemorySSA.h:993
Encapsulates MemorySSA, including all data associated with memory accesses.
Definition MemorySSA.h:702
LLVM_ABI void verifyMemorySSA(VerificationLevel=VerificationLevel::Fast) const
Verify that MemorySSA is self consistent (IE definitions dominate all uses, uses appear in the right ...
MemoryUseOrDef * getMemoryAccess(const Instruction *I) const
Given a memory Mod/Ref'ing instruction, get the MemorySSA access associated with it.
Definition MemorySSA.h:720
Root of the metadata hierarchy.
Definition Metadata.h:63
void setIncomingValue(unsigned i, Value *V)
BasicBlock * getIncomingBlock(unsigned i) const
Return incoming basic block number i.
Value * getIncomingValue(unsigned i) const
Return incoming value number x.
int getBasicBlockIndex(const BasicBlock *BB) const
Return the first index of the specified basic block in the value list for this PHI.
unsigned getNumIncomingValues() const
Return the number of incoming edges.
PassRegistry - This class manages the registration and intitialization of the pass subsystem as appli...
static LLVM_ABI PointerType * get(Type *ElementType, unsigned AddressSpace)
This constructs a pointer to an object of the specified type in a numbered address space.
static LLVM_ABI PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
bool insert(const T &X)
Insert a new element into the PriorityWorklist.
static bool isSignedRecurrenceKind(RecurKind Kind)
Returns true if recurrece kind is a signed redux kind.
static bool isAnyOfRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is of the form select(cmp(),x,y) where one of (x,...
static bool isFindLastIVRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is of the form select(cmp(),x,y) where one of (x,...
static bool isFindIVRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is of the form select(cmp(),x,y) where one of (x,...
static bool isMinMaxRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is any min/max kind.
A global registry used in conjunction with static constructors to make pluggable components (like tar...
Definition Registry.h:44
Legacy wrapper pass to provide the SCEVAAResult object.
This class uses information about analyze scalars to rewrite expressions in canonical form.
ScalarEvolution * getSE()
LLVM_ABI Value * expandCodeFor(const SCEV *SH, Type *Ty, BasicBlock::iterator I)
Insert code to directly compute the specified SCEV expression into the program.
void eraseDeadInstructions(Value *Root)
Remove inserted instructions that are dead, e.g.
This class represents an analyzed expression in the program.
LLVM_ABI Type * getType() const
Return the LLVM type of this SCEV expression.
The main scalar evolution driver.
LLVM_ABI bool isKnownNonNegative(const SCEV *S)
Test if the given expression is known to be non-negative.
LLVM_ABI bool isLoopEntryGuardedByCond(const Loop *L, CmpPredicate Pred, const SCEV *LHS, const SCEV *RHS)
Test whether entry to the loop is protected by a conditional between LHS and RHS.
LLVM_ABI const SCEV * getSCEVAtScope(const SCEV *S, const Loop *L)
Return a SCEV expression for the specified value at the specified scope in the program.
const SCEV * getZero(Type *Ty)
Return a SCEV for the constant 0 of a specific type.
LLVM_ABI const SCEV * getConstant(ConstantInt *V)
LLVM_ABI const SCEV * getSCEV(Value *V)
Return a SCEV expression for the full generality of the specified expression.
LLVM_ABI void forgetLoop(const Loop *L)
This method should be called by the client when it has changed a loop in a way that may effect Scalar...
LLVM_ABI bool isLoopInvariant(const SCEV *S, const Loop *L)
Return true if the value of the given SCEV is unchanging in the specified loop.
LLVM_ABI LoopDisposition getLoopDisposition(const SCEV *S, const Loop *L)
Return the "disposition" of the given SCEV with respect to the given loop.
LLVM_ABI bool isSCEVable(Type *Ty) const
Test if values of the given type are analyzable within the SCEV framework.
LLVM_ABI void forgetValue(Value *V)
This method should be called by the client when it has changed a value in a way that may effect its v...
LLVM_ABI void forgetBlockAndLoopDispositions(Value *V=nullptr)
Called when the client has changed the disposition of values in a loop or block.
LoopDisposition
An enum describing the relationship between a SCEV and a loop.
@ LoopInvariant
The SCEV is loop-invariant.
LLVM_ABI bool isAvailableAtLoopEntry(const SCEV *S, const Loop *L)
Determine if the SCEV can be evaluated at loop's entry.
LLVM_ABI const SCEV * getExitCount(const Loop *L, const BasicBlock *ExitingBlock, ExitCountKind Kind=Exact)
Return the number of times the backedge executes before the given exit would be taken; if not exactly...
LLVM_ABI const SCEV * applyLoopGuards(const SCEV *Expr, const Loop *L)
Try to apply information from loop guards for L to Expr.
This class represents the LLVM 'select' instruction.
Implements a dense probed hash-table based set with some number of buckets stored inline.
Definition DenseSet.h:281
A version of PriorityWorklist that selects small size optimized data structures for the vector and ma...
size_type size() const
Definition SmallPtrSet.h:99
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
bool contains(ConstPtrType Ptr) const
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
A SetVector that performs no allocations if smaller than a certain size.
Definition SetVector.h:356
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
reference emplace_back(ArgTypes &&... Args)
void append(ItTy in_start, ItTy in_end)
Add the specified range to the end of the SmallVector.
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
StringRef - Represent a constant reference to a string, i.e.
Definition StringRef.h:55
bool starts_with(StringRef Prefix) const
Check if this string starts with the given Prefix.
Definition StringRef.h:269
Provides information about what library functions are available for the current target.
This pass provides access to the codegen interfaces that are needed for IR-level transformations.
Value handle that tracks a Value across RAUW.
The instances of the Type class are immutable: once they are created, they are never changed.
Definition Type.h:45
bool isVectorTy() const
True if this is an instance of VectorType.
Definition Type.h:273
static LLVM_ABI IntegerType * getInt32Ty(LLVMContext &C)
Definition Type.cpp:297
bool isIntegerTy() const
True if this is an instance of IntegerType.
Definition Type.h:240
A Use represents the edge between a Value definition and its users.
Definition Use.h:35
static LLVM_ABI Intrinsic::ID getForIntrinsic(Intrinsic::ID Id)
The llvm.vp.
static LLVM_ABI bool isVPReduction(Intrinsic::ID ID)
LLVM Value Representation.
Definition Value.h:75
Type * getType() const
All values are typed, get the type of this value.
Definition Value.h:256
LLVM_ABI void replaceAllUsesWith(Value *V)
Change all uses of this to point to a new Value.
Definition Value.cpp:546
iterator_range< user_iterator > users()
Definition Value.h:426
bool use_empty() const
Definition Value.h:346
LLVM_ABI LLVMContext & getContext() const
All values hold a context through their type.
Definition Value.cpp:1101
iterator_range< use_iterator > uses()
Definition Value.h:380
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
Definition Value.cpp:322
std::pair< iterator, bool > insert(const ValueT &V)
Definition DenseSet.h:194
An efficient, type-erasing, non-owning reference to a callable.
const ParentTy * getParent() const
Definition ilist_node.h:34
This class implements an extremely fast bulk output stream that can only output to a stream.
Definition raw_ostream.h:53
Changed
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
Abstract Attribute helper functions.
Definition Attributor.h:165
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
Definition CallingConv.h:24
std::enable_if_t< detail::IsValidPointer< X, Y >::value, X * > extract_or_null(Y &&MD)
Extract a Value from Metadata, allowing null.
Definition Metadata.h:681
This is an optimization pass for GlobalISel generic memory operations.
auto drop_begin(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the first N elements excluded.
Definition STLExtras.h:310
LLVM_ABI Value * createSimpleReduction(IRBuilderBase &B, Value *Src, RecurKind RdxKind)
Create a reduction of the given vector.
LLVM_ABI std::optional< ElementCount > getOptionalElementCountLoopAttribute(const Loop *TheLoop)
Find a combination of metadata ("llvm.loop.vectorize.width" and "llvm.loop.vectorize....
@ Low
Lower the current thread's priority such that it does not affect foreground tasks significantly.
Definition Threading.h:262
LLVM_ABI Value * addRuntimeChecks(Instruction *Loc, Loop *TheLoop, const SmallVectorImpl< RuntimePointerCheck > &PointerChecks, SCEVExpander &Expander, bool HoistRuntimeChecks=false)
Add code that checks at runtime if the accessed arrays in PointerChecks overlap.
LLVM_ABI Value * createFindLastIVReduction(IRBuilderBase &B, Value *Src, RecurKind RdxKind, Value *Start, Value *Sentinel)
Create a reduction of the given vector Src for a reduction of the kind RecurKind::FindLastIV.
auto find(R &&Range, const T &Val)
Provide wrappers to std::find which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1733
void fill(R &&Range, T &&Value)
Provide wrappers to std::fill which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1727
LLVM_ABI std::optional< unsigned > getLoopEstimatedTripCount(Loop *L, unsigned *EstimatedLoopInvocationWeight=nullptr)
Return either:
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1707
LLVM_ABI Intrinsic::ID getMinMaxReductionIntrinsicOp(Intrinsic::ID RdxID)
Returns the min/max intrinsic used when expanding a min/max reduction.
LLVM_ABI bool getBooleanLoopAttribute(const Loop *TheLoop, StringRef Name)
Returns true if Name is applied to TheLoop and enabled.
std::pair< const RuntimeCheckingPtrGroup *, const RuntimeCheckingPtrGroup * > RuntimePointerCheck
A memcheck which made up of a pair of grouped pointers.
detail::scope_exit< std::decay_t< Callable > > make_scope_exit(Callable &&F)
Definition ScopeExit.h:59
LLVM_ABI bool isKnownNonPositiveInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE)
Returns true if we can prove that S is defined and always non-positive in loop L.
LLVM_ABI std::optional< bool > getOptionalBoolLoopAttribute(const Loop *TheLoop, StringRef Name)
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:649
void appendReversedLoopsToWorklist(RangeT &&, SmallPriorityWorklist< Loop *, 4 > &)
Utility that implements appending of loops onto a worklist given a range.
auto successors(const MachineBasicBlock *BB)
LLVM_ABI void initializeLoopPassPass(PassRegistry &)
Manually defined generic "LoopPass" dependency initialization.
constexpr from_range_t from_range
LLVM_ABI bool formLCSSARecursively(Loop &L, const DominatorTree &DT, const LoopInfo *LI, ScalarEvolution *SE)
Put a loop nest into LCSSA form.
Definition LCSSA.cpp:449
LLVM_ABI Value * getReductionIdentity(Intrinsic::ID RdxID, Type *Ty, FastMathFlags FMF)
Given information about an @llvm.vector.reduce.
LLVM_ABI std::optional< MDNode * > makeFollowupLoopID(MDNode *OrigLoopID, ArrayRef< StringRef > FollowupAttrs, const char *InheritOptionsAttrsPrefix="", bool AlwaysNew=false)
Create a new loop identifier for a loop created from a loop transformation.
LLVM_ABI unsigned getArithmeticReductionInstruction(Intrinsic::ID RdxID)
Returns the arithmetic instruction opcode used when expanding a reduction.
iterator_range< early_inc_iterator_impl< detail::IterOfRange< RangeT > > > make_early_inc_range(RangeT &&Range)
Make a range that does early increment to allow mutation of the underlying range without disrupting i...
Definition STLExtras.h:626
LLVM_ABI char & LCSSAID
Definition LCSSA.cpp:526
LLVM_ABI char & LoopSimplifyID
LLVM_ABI Value * createMinMaxOp(IRBuilderBase &Builder, RecurKind RK, Value *Left, Value *Right)
Returns a Min/Max operation corresponding to MinMaxRecurrenceKind.
LLVM_ABI SmallVector< BasicBlock *, 16 > collectChildrenInLoop(DominatorTree *DT, DomTreeNode *N, const Loop *CurLoop)
Does a BFS from a given node to all of its children inside a given loop.
LLVM_ABI void addStringMetadataToLoop(Loop *TheLoop, const char *MDString, unsigned V=0)
Set input string into loop metadata by keeping other values intact.
LLVM_ABI bool cannotBeMaxInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE, bool Signed)
Returns true if S is defined and never is equal to signed/unsigned max.
DomTreeNodeBase< BasicBlock > DomTreeNode
Definition Dominators.h:95
constexpr T divideNearest(U Numerator, V Denominator)
Returns (Numerator / Denominator) rounded by round-half-up.
Definition MathExtras.h:469
LLVM_ABI TransformationMode hasVectorizeTransformation(const Loop *L)
auto dyn_cast_or_null(const Y &Val)
Definition Casting.h:759
OutputIt transform(R &&Range, OutputIt d_first, UnaryFunction F)
Wrapper function around std::transform to apply a function to a range and store the result elsewhere.
Definition STLExtras.h:1950
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1714
LLVM_ABI bool isInstructionTriviallyDead(Instruction *I, const TargetLibraryInfo *TLI=nullptr)
Return true if the result produced by the instruction is not used, and the instruction will return.
Definition Local.cpp:402
LLVM_ABI SmallVector< Instruction *, 8 > findDefsUsedOutsideOfLoop(Loop *L)
Returns the instructions that use values defined in the loop.
auto reverse(ContainerTy &&C)
Definition STLExtras.h:400
LLVM_ABI constexpr Intrinsic::ID getReductionIntrinsicID(RecurKind RK)
Returns the llvm.vector.reduce intrinsic that corresponds to the recurrence kind.
LLVM_ABI bool isMustProgress(const Loop *L)
Return true if this loop can be assumed to make progress.
constexpr bool isPowerOf2_32(uint32_t Value)
Return true if the argument is a power of two > 0.
Definition MathExtras.h:288
bool isModSet(const ModRefInfo MRI)
Definition ModRef.h:49
LLVM_ABI TransformationMode hasUnrollAndJamTransformation(const Loop *L)
LLVM_ABI void deleteDeadLoop(Loop *L, DominatorTree *DT, ScalarEvolution *SE, LoopInfo *LI, MemorySSA *MSSA=nullptr)
This function deletes dead loops.
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition Debug.cpp:207
LLVM_ABI bool hasDisableAllTransformsHint(const Loop *L)
Look for the loop attribute that disables all transformation heuristic.
LLVM_TEMPLATE_ABI void appendLoopsToWorklist(RangeT &&, SmallPriorityWorklist< Loop *, 4 > &)
Utility that implements appending of loops onto a worklist given a range.
LLVM_ABI cl::opt< unsigned > SCEVCheapExpansionBudget
FunctionAddr VTableAddr Count
Definition InstrProf.h:139
LLVM_ABI Value * getShuffleReduction(IRBuilderBase &Builder, Value *Src, unsigned Op, TargetTransformInfo::ReductionShuffle RS, RecurKind MinMaxKind=RecurKind::None)
Generates a vector reduction using shufflevectors to reduce the value.
LLVM_ABI TransformationMode hasUnrollTransformation(const Loop *L)
LLVM_ABI TransformationMode hasDistributeTransformation(const Loop *L)
LLVM_ABI void breakLoopBackedge(Loop *L, DominatorTree &DT, ScalarEvolution &SE, LoopInfo &LI, MemorySSA *MSSA)
Remove the backedge of the specified loop.
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
Definition Casting.h:548
LLVM_ABI void getLoopAnalysisUsage(AnalysisUsage &AU)
Helper to consistently add the set of standard passes to a loop pass's AnalysisUsage.
LLVM_ABI void propagateIRFlags(Value *I, ArrayRef< Value * > VL, Value *OpValue=nullptr, bool IncludeWrapFlags=true)
Get the intersection (logical and) of all of the potential IR flags of each scalar operation (VL) tha...
LLVM_ABI bool isKnownPositiveInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE)
Returns true if we can prove that S is defined and always positive in loop L.
LLVM_ATTRIBUTE_VISIBILITY_DEFAULT AnalysisKey InnerAnalysisManagerProxy< AnalysisManagerT, IRUnitT, ExtraArgTs... >::Key
LLVM_ABI unsigned changeToUnreachable(Instruction *I, bool PreserveLCSSA=false, DomTreeUpdater *DTU=nullptr, MemorySSAUpdater *MSSAU=nullptr)
Insert an unreachable instruction before the specified instruction, making it and the rest of the cod...
Definition Local.cpp:2513
RNSuccIterator< NodeRef, BlockT, RegionT > succ_begin(NodeRef Node)
LLVM_ABI std::optional< int > getOptionalIntLoopAttribute(const Loop *TheLoop, StringRef Name)
Find named metadata for a loop with an integer value.
LLVM_ABI BasicBlock * SplitBlockPredecessors(BasicBlock *BB, ArrayRef< BasicBlock * > Preds, const char *Suffix, DominatorTree *DT, LoopInfo *LI=nullptr, MemorySSAUpdater *MSSAU=nullptr, bool PreserveLCSSA=false)
This method introduces at least one new basic block into the function and moves some of the predecess...
@ First
Helpers to iterate all locations in the MemoryEffectsBase class.
Definition ModRef.h:71
TargetTransformInfo TTI
LLVM_ABI CmpInst::Predicate getMinMaxReductionPredicate(RecurKind RK)
Returns the comparison predicate used when expanding a min/max reduction.
LLVM_ABI TransformationMode hasLICMVersioningTransformation(const Loop *L)
LLVM_ABI bool VerifyMemorySSA
Enables verification of MemorySSA.
Definition MemorySSA.cpp:84
TransformationMode
The mode sets how eager a transformation should be applied.
Definition LoopUtils.h:284
@ TM_Unspecified
The pass can use heuristics to determine whether a transformation should be applied.
Definition LoopUtils.h:287
@ TM_SuppressedByUser
The transformation must not be applied.
Definition LoopUtils.h:307
@ TM_ForcedByUser
The transformation was directed by the user, e.g.
Definition LoopUtils.h:301
@ TM_Disable
The transformation should not be applied.
Definition LoopUtils.h:293
@ TM_Enable
The transformation should be applied without considering a cost model.
Definition LoopUtils.h:290
RNSuccIterator< NodeRef, BlockT, RegionT > succ_end(NodeRef Node)
LLVM_ABI bool hasDisableLICMTransformsHint(const Loop *L)
Look for the loop attribute that disables the LICM transformation heuristics.
template LLVM_TEMPLATE_ABI void appendLoopsToWorklist< Loop & >(Loop &L, SmallPriorityWorklist< Loop *, 4 > &Worklist)
LLVM_ABI Intrinsic::ID getReductionForBinop(Instruction::BinaryOps Opc)
Returns the reduction intrinsic id corresponding to the binary operation.
RecurKind
These are the kinds of recurrences that we support.
@ UMin
Unsigned integer min implemented in terms of select(cmp()).
@ FMinimumNum
FP min with llvm.minimumnum semantics.
@ Or
Bitwise or logical OR of integers.
@ FMinimum
FP min with llvm.minimum semantics.
@ FMaxNum
FP max with llvm.maxnum semantics including NaNs.
@ Mul
Product of integers.
@ None
Not a recurrence.
@ AnyOf
AnyOf reduction with select(cmp(),x,y) where one of (x,y) is loop invariant, and both x and y are int...
@ Xor
Bitwise or logical XOR of integers.
@ FMax
FP max implemented in terms of select(cmp()).
@ FMaximum
FP max with llvm.maximum semantics.
@ FMulAdd
Sum of float products with llvm.fmuladd(a * b + sum).
@ FMul
Product of floats.
@ SMax
Signed integer max implemented in terms of select(cmp()).
@ And
Bitwise or logical AND of integers.
@ SMin
Signed integer min implemented in terms of select(cmp()).
@ FMin
FP min implemented in terms of select(cmp()).
@ FMinNum
FP min with llvm.minnum semantics including NaNs.
@ Sub
Subtraction of integers.
@ Add
Sum of integers.
@ AddChainWithSubs
A chain of adds and subs.
@ FAdd
Sum of floats.
@ FMaximumNum
FP max with llvm.maximumnum semantics.
@ UMax
Unsigned integer max implemented in terms of select(cmp()).
LLVM_ABI Value * getRecurrenceIdentity(RecurKind K, Type *Tp, FastMathFlags FMF)
Given information about an recurrence kind, return the identity for the @llvm.vector....
LLVM_ABI void setProfileInfoAfterUnrolling(Loop *OrigLoop, Loop *UnrolledLoop, Loop *RemainderLoop, uint64_t UF)
Set weights for UnrolledLoop and RemainderLoop based on weights for OrigLoop and the following distri...
LLVM_ABI bool formDedicatedExitBlocks(Loop *L, DominatorTree *DT, LoopInfo *LI, MemorySSAUpdater *MSSAU, bool PreserveLCSSA)
Ensure that all exit blocks of the loop are dedicated exits.
Definition LoopUtils.cpp:58
DWARFExpression::Operation Op
raw_ostream & operator<<(raw_ostream &OS, const APFixedPoint &FX)
LLVM_ABI bool isKnownNegativeInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE)
Returns true if we can prove that S is defined and always negative in loop L.
constexpr unsigned BitWidth
ValueMap< const Value *, WeakTrackingVH > ValueToValueMapTy
LLVM_ABI bool setLoopEstimatedTripCount(Loop *L, unsigned EstimatedTripCount, std::optional< unsigned > EstimatedLoopInvocationWeight=std::nullopt)
Set llvm.loop.estimated_trip_count with the value EstimatedTripCount in the loop metadata of L.
LLVM_ABI bool extractBranchWeights(const MDNode *ProfileData, SmallVectorImpl< uint32_t > &Weights)
Extract branch weights from MD_prof metadata.
LLVM_ABI const char * LLVMLoopEstimatedTripCount
Profile-based loop metadata that should be accessed only by using llvm::getLoopEstimatedTripCount and...
LLVM_ABI bool hasIterationCountInvariantInParent(Loop *L, ScalarEvolution &SE)
Check inner loop (L) backedge count is known to be invariant on all iterations of its outer loop.
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:565
LLVM_ABI bool isAlmostDeadIV(PHINode *IV, BasicBlock *LatchBlock, Value *Cond)
Return true if the induction variable IV in a Loop whose latch is LatchBlock would become dead if the...
auto predecessors(const MachineBasicBlock *BB)
LLVM_ABI int rewriteLoopExitValues(Loop *L, LoopInfo *LI, TargetLibraryInfo *TLI, ScalarEvolution *SE, const TargetTransformInfo *TTI, SCEVExpander &Rewriter, DominatorTree *DT, ReplaceExitVal ReplaceExitValue, SmallVector< WeakTrackingVH, 16 > &DeadInsts)
If the final value of any expressions that are recurrent in the loop can be computed,...
LLVM_ABI Value * createOrderedReduction(IRBuilderBase &B, RecurKind RdxKind, Value *Src, Value *Start)
Create an ordered reduction intrinsic using the given recurrence kind RdxKind.
LLVM_ABI Value * addDiffRuntimeChecks(Instruction *Loc, ArrayRef< PointerDiffInfo > Checks, SCEVExpander &Expander, function_ref< Value *(IRBuilderBase &, unsigned)> GetVF, unsigned IC)
LLVM_ABI RecurKind getMinMaxReductionRecurKind(Intrinsic::ID RdxID)
Returns the recurence kind used when expanding a min/max reduction.
ReplaceExitVal
Definition LoopUtils.h:516
@ UnusedIndVarInLoop
Definition LoopUtils.h:520
@ OnlyCheapRepl
Definition LoopUtils.h:518
@ AlwaysRepl
Definition LoopUtils.h:521
LLVM_ABI BasicBlock * SplitEdge(BasicBlock *From, BasicBlock *To, DominatorTree *DT=nullptr, LoopInfo *LI=nullptr, MemorySSAUpdater *MSSAU=nullptr, const Twine &BBName="")
Split the edge connecting the specified blocks, and return the newly created basic block between From...
LLVM_ABI std::optional< IVConditionInfo > hasPartialIVCondition(const Loop &L, unsigned MSSAThreshold, const MemorySSA &MSSA, AAResults &AA)
Check if the loop header has a conditional branch that is not loop-invariant, because it involves loa...
static auto filterDbgVars(iterator_range< simple_ilist< DbgRecord >::iterator > R)
Filter the DbgRecord range to DbgVariableRecord types only and downcast.
LLVM_ABI Value * createAnyOfReduction(IRBuilderBase &B, Value *Src, Value *InitVal, PHINode *OrigPhi)
Create a reduction of the given vector Src for a reduction of kind RecurKind::AnyOf.
LLVM_ABI bool cannotBeMinInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE, bool Signed)
Returns true if S is defined and never is equal to signed/unsigned min.
LLVM_ABI bool isKnownNonNegativeInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE)
Returns true if we can prove that S is defined and always non-negative in loop L.
LLVM_ABI Value * getOrderedReduction(IRBuilderBase &Builder, Value *Acc, Value *Src, unsigned Op, RecurKind MinMaxKind=RecurKind::None)
Generates an ordered vector reduction using extracts to reduce the value.
LLVM_ABI MDNode * findOptionMDForLoopID(MDNode *LoopID, StringRef Name)
Find and return the loop attribute node for the attribute Name in LoopID.
LLVM_ABI Intrinsic::ID getMinMaxReductionIntrinsicID(Intrinsic::ID IID)
Returns the llvm.vector.reduce min/max intrinsic that corresponds to the intrinsic op.
@ Enable
Enable colors.
Definition WithColor.h:47
LLVM_ABI Loop * cloneLoop(Loop *L, Loop *PL, ValueToValueMapTy &VM, LoopInfo *LI, LPPassManager *LPM)
Recursively clone the specified loop and all of its children, mapping the blocks with the specified m...
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
Definition BitVector.h:853
#define N
DbgLoop(const Loop *L)
const Loop * L
IR Values for the lower and upper bounds of a pointer evolution.
TrackingVH< Value > Start
TrackingVH< Value > End
Value * StrideToCheck
unsigned Ith
RewritePhi(PHINode *P, unsigned I, const SCEV *Val, Instruction *ExpansionPt, bool H)
const SCEV * ExpansionSCEV
PHINode * PN
Instruction * ExpansionPoint
Struct to hold information about a partially invariant condition.
Definition LoopUtils.h:605
Incoming for lane maks phi as machine instruction, incoming register Reg and incoming block Block are...
unsigned AddressSpace
Address space of the involved pointers.
bool NeedsFreeze
Whether the pointer needs to be frozen after expansion, e.g.
const SCEV * High
The SCEV expression which represents the upper bound of all the pointers in this group.
const SCEV * Low
The SCEV expression which represents the lower bound of all the pointers in this group.