LLVM 22.0.0git
MipsAsmBackend.cpp
Go to the documentation of this file.
1//===-- MipsAsmBackend.cpp - Mips Asm Backend ----------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the MipsAsmBackend class.
10//
11//===----------------------------------------------------------------------===//
12//
13
20#include "llvm/MC/MCAssembler.h"
21#include "llvm/MC/MCContext.h"
26#include "llvm/MC/MCValue.h"
30
31using namespace llvm;
32
33// Prepare value for the target space for it
35 MCContext &Ctx) {
36
37 unsigned Kind = Fixup.getKind();
38
39 // Add/subtract and shift
40 switch (Kind) {
41 default:
42 return 0;
43 case FK_Data_2:
60 Value &= 0xffff;
61 break;
64 Ctx.reportError(Fixup.getLoc(),
65 "fixup value out of range [-32768, 65535]");
66 break;
72 case FK_Data_4:
73 case FK_Data_8:
76 break;
78 // The displacement is then divided by 4 to give us an 18 bit
79 // address range. Forcing a signed division because Value can be negative.
80 Value = (int64_t)Value / 4;
81 // We now check if Value can be encoded as a 16-bit signed immediate.
82 if (!isInt<16>(Value)) {
83 Ctx.reportError(Fixup.getLoc(), "out of range PC16 fixup");
84 return 0;
85 }
86 break;
89 // Forcing a signed division because Value can be negative.
90 Value = (int64_t)Value / 4;
91 // We now check if Value can be encoded as a 19-bit signed immediate.
92 if (!isInt<19>(Value)) {
93 Ctx.reportError(Fixup.getLoc(), "out of range PC19 fixup");
94 return 0;
95 }
96 break;
98 // So far we are only using this type for jumps.
99 // The displacement is then divided by 4 to give us an 28 bit
100 // address range.
101 Value >>= 2;
102 break;
110 // Get the 2nd 16-bits. Also add 1 if bit 15 is 1.
111 Value = ((Value + 0x8000) >> 16) & 0xffff;
112 break;
115 // Get the 3rd 16-bits.
116 Value = ((Value + 0x80008000LL) >> 32) & 0xffff;
117 break;
120 // Get the 4th 16-bits.
121 Value = ((Value + 0x800080008000LL) >> 48) & 0xffff;
122 break;
124 Value >>= 1;
125 break;
127 Value -= 4;
128 // Forcing a signed division because Value can be negative.
129 Value = (int64_t) Value / 2;
130 // We now check if Value can be encoded as a 7-bit signed immediate.
131 if (!isInt<7>(Value)) {
132 Ctx.reportError(Fixup.getLoc(), "out of range PC7 fixup");
133 return 0;
134 }
135 break;
137 Value -= 2;
138 // Forcing a signed division because Value can be negative.
139 Value = (int64_t) Value / 2;
140 // We now check if Value can be encoded as a 10-bit signed immediate.
141 if (!isInt<10>(Value)) {
142 Ctx.reportError(Fixup.getLoc(), "out of range PC10 fixup");
143 return 0;
144 }
145 break;
147 Value -= 4;
148 // Forcing a signed division because Value can be negative.
149 Value = (int64_t)Value / 2;
150 // We now check if Value can be encoded as a 16-bit signed immediate.
151 if (!isInt<16>(Value)) {
152 Ctx.reportError(Fixup.getLoc(), "out of range PC16 fixup");
153 return 0;
154 }
155 break;
157 // Forcing a signed division because Value can be negative.
158 Value = (int64_t)Value / 8;
159 // We now check if Value can be encoded as a 18-bit signed immediate.
160 if (!isInt<18>(Value)) {
161 Ctx.reportError(Fixup.getLoc(), "out of range PC18 fixup");
162 return 0;
163 }
164 break;
166 // Check alignment.
167 if ((Value & 7)) {
168 Ctx.reportError(Fixup.getLoc(), "out of range PC18 fixup");
169 }
170 // Forcing a signed division because Value can be negative.
171 Value = (int64_t)Value / 8;
172 // We now check if Value can be encoded as a 18-bit signed immediate.
173 if (!isInt<18>(Value)) {
174 Ctx.reportError(Fixup.getLoc(), "out of range PC18 fixup");
175 return 0;
176 }
177 break;
179 // Forcing a signed division because Value can be negative.
180 Value = (int64_t) Value / 4;
181 // We now check if Value can be encoded as a 21-bit signed immediate.
182 if (!isInt<21>(Value)) {
183 Ctx.reportError(Fixup.getLoc(), "out of range PC21 fixup");
184 return 0;
185 }
186 break;
188 // Forcing a signed division because Value can be negative.
189 Value = (int64_t) Value / 4;
190 // We now check if Value can be encoded as a 26-bit signed immediate.
191 if (!isInt<26>(Value)) {
192 Ctx.reportError(Fixup.getLoc(), "out of range PC26 fixup");
193 return 0;
194 }
195 break;
197 // Forcing a signed division because Value can be negative.
198 Value = (int64_t)Value / 2;
199 // We now check if Value can be encoded as a 26-bit signed immediate.
200 if (!isInt<26>(Value)) {
201 Ctx.reportError(Fixup.getLoc(), "out of range PC26 fixup");
202 return 0;
203 }
204 break;
206 // Forcing a signed division because Value can be negative.
207 Value = (int64_t)Value / 2;
208 // We now check if Value can be encoded as a 21-bit signed immediate.
209 if (!isInt<21>(Value)) {
210 Ctx.reportError(Fixup.getLoc(), "out of range PC21 fixup");
211 return 0;
212 }
213 break;
214 }
215
216 return Value;
217}
218
219std::unique_ptr<MCObjectTargetWriter>
221 return createMipsELFObjectWriter(TheTriple, IsN32);
222}
223
224// Little-endian fixup data byte ordering:
225// mips32r2: a | b | x | x
226// microMIPS: x | x | a | b
227
228static bool needsMMLEByteOrder(unsigned Kind) {
229 return Kind != Mips::fixup_MICROMIPS_PC10_S1 &&
232}
233
234// Calculate index for microMIPS specific little endian byte order
235static unsigned calculateMMLEIndex(unsigned i) {
236 assert(i <= 3 && "Index out of range!");
237
238 return (1 - i / 2) * 2 + i % 2;
239}
240
281
282/// ApplyFixup - Apply the \p Value for given \p Fixup into the provided
283/// data fragment, at the offset specified by the fixup and following the
284/// fixup kind as appropriate.
286 const MCValue &Target, uint8_t *Data,
287 uint64_t Value, bool IsResolved) {
289 IsResolved = false;
290 maybeAddReloc(F, Fixup, Target, Value, IsResolved);
291 MCFixupKind Kind = Fixup.getKind();
292 MCContext &Ctx = getContext();
294
295 if (!Value)
296 return; // Doesn't change encoding.
297
298 // Where do we start in the object
299 // Number of bytes we need to fixup
300 unsigned NumBytes = (getFixupKindInfo(Kind).TargetSize + 7) / 8;
301 // Used to point to big endian bytes
302 unsigned FullSize;
303
304 switch ((unsigned)Kind) {
305 case FK_Data_2:
308 FullSize = 2;
309 break;
310 case FK_Data_8:
312 FullSize = 8;
313 break;
314 case FK_Data_4:
315 default:
316 FullSize = 4;
317 break;
318 }
319
320 // Grab current value, if any, from bits.
321 uint64_t CurVal = 0;
322
323 bool microMipsLEByteOrder = needsMMLEByteOrder((unsigned) Kind);
324
325 for (unsigned i = 0; i != NumBytes; ++i) {
326 unsigned Idx = Endian == llvm::endianness::little
327 ? (microMipsLEByteOrder ? calculateMMLEIndex(i) : i)
328 : (FullSize - 1 - i);
329 CurVal |= (uint64_t)((uint8_t)Data[Idx]) << (i * 8);
330 }
331
332 uint64_t Mask = ((uint64_t)(-1) >>
333 (64 - getFixupKindInfo(Kind).TargetSize));
334 CurVal |= Value & Mask;
335
336 // Write out the fixed up bytes back to the code/data bits.
337 for (unsigned i = 0; i != NumBytes; ++i) {
338 unsigned Idx = Endian == llvm::endianness::little
339 ? (microMipsLEByteOrder ? calculateMMLEIndex(i) : i)
340 : (FullSize - 1 - i);
341 Data[Idx] = (uint8_t)((CurVal >> (i * 8)) & 0xff);
342 }
343}
344
345std::optional<MCFixupKind> MipsAsmBackend::getFixupKind(StringRef Name) const {
346 unsigned Type = llvm::StringSwitch<unsigned>(Name)
347 .Case("BFD_RELOC_NONE", ELF::R_MIPS_NONE)
348 .Case("BFD_RELOC_16", ELF::R_MIPS_16)
349 .Case("BFD_RELOC_32", ELF::R_MIPS_32)
350 .Case("BFD_RELOC_64", ELF::R_MIPS_64)
351 .Default(-1u);
352 if (Type != -1u)
353 return static_cast<MCFixupKind>(FirstLiteralRelocationKind + Type);
354
356 .Case("R_MIPS_NONE", FK_NONE)
357 .Case("R_MIPS_32", FK_Data_4)
358 .Case("R_MIPS_CALL_HI16", Mips::fixup_Mips_CALL_HI16)
359 .Case("R_MIPS_CALL_LO16", Mips::fixup_Mips_CALL_LO16)
360 .Case("R_MIPS_CALL16", Mips::fixup_Mips_CALL16)
361 .Case("R_MIPS_GOT16", Mips::fixup_Mips_GOT)
362 .Case("R_MIPS_GOT_PAGE", Mips::fixup_Mips_GOT_PAGE)
363 .Case("R_MIPS_GOT_OFST", Mips::fixup_Mips_GOT_OFST)
364 .Case("R_MIPS_GOT_DISP", Mips::fixup_Mips_GOT_DISP)
365 .Case("R_MIPS_GOT_HI16", Mips::fixup_Mips_GOT_HI16)
366 .Case("R_MIPS_GOT_LO16", Mips::fixup_Mips_GOT_LO16)
367 .Case("R_MIPS_TLS_GOTTPREL", Mips::fixup_Mips_GOTTPREL)
368 .Case("R_MIPS_TLS_DTPREL_HI16", Mips::fixup_Mips_DTPREL_HI)
369 .Case("R_MIPS_TLS_DTPREL_LO16", Mips::fixup_Mips_DTPREL_LO)
370 .Case("R_MIPS_TLS_GD", Mips::fixup_Mips_TLSGD)
371 .Case("R_MIPS_TLS_LDM", Mips::fixup_Mips_TLSLDM)
372 .Case("R_MIPS_TLS_TPREL_HI16", Mips::fixup_Mips_TPREL_HI)
373 .Case("R_MIPS_TLS_TPREL_LO16", Mips::fixup_Mips_TPREL_LO)
374 .Case("R_MICROMIPS_CALL16", Mips::fixup_MICROMIPS_CALL16)
375 .Case("R_MICROMIPS_GOT_DISP", Mips::fixup_MICROMIPS_GOT_DISP)
376 .Case("R_MICROMIPS_GOT_PAGE", Mips::fixup_MICROMIPS_GOT_PAGE)
377 .Case("R_MICROMIPS_GOT_OFST", Mips::fixup_MICROMIPS_GOT_OFST)
378 .Case("R_MICROMIPS_GOT16", Mips::fixup_MICROMIPS_GOT16)
379 .Case("R_MICROMIPS_TLS_GOTTPREL", Mips::fixup_MICROMIPS_GOTTPREL)
380 .Case("R_MICROMIPS_TLS_DTPREL_HI16",
382 .Case("R_MICROMIPS_TLS_DTPREL_LO16",
384 .Case("R_MICROMIPS_TLS_GD", Mips::fixup_MICROMIPS_TLS_GD)
385 .Case("R_MICROMIPS_TLS_LDM", Mips::fixup_MICROMIPS_TLS_LDM)
386 .Case("R_MICROMIPS_TLS_TPREL_HI16", Mips::fixup_MICROMIPS_TLS_TPREL_HI16)
387 .Case("R_MICROMIPS_TLS_TPREL_LO16", Mips::fixup_MICROMIPS_TLS_TPREL_LO16)
388 .Case("R_MIPS_JALR", Mips::fixup_Mips_JALR)
389 .Case("R_MICROMIPS_JALR", Mips::fixup_MICROMIPS_JALR)
391}
392
394 const static MCFixupKindInfo LittleEndianInfos[] = {
395 // This table *must* be in same the order of fixup_* kinds in
396 // MipsFixupKinds.h.
397 //
398 // name offset bits flags
399 // clang-format off
400 { "fixup_Mips_16", 0, 16, 0 },
401 { "fixup_Mips_32", 0, 32, 0 },
402 { "fixup_Mips_REL32", 0, 32, 0 },
403 { "fixup_Mips_GPREL32", 0, 32, 0 },
404 { "fixup_Mips_DTPREL32", 0, 32, 0 },
405 { "fixup_Mips_DTPREL64", 0, 64, 0 },
406 { "fixup_Mips_TPREL32", 0, 32, 0 },
407 { "fixup_Mips_TPREL64", 0, 64, 0 },
408 { "fixup_Mips_26", 0, 26, 0 },
409 { "fixup_Mips_HI16", 0, 16, 0 },
410 { "fixup_Mips_LO16", 0, 16, 0 },
411 { "fixup_Mips_AnyImm16", 0, 16, 0 },
412 { "fixup_Mips_GPREL16", 0, 16, 0 },
413 { "fixup_Mips_LITERAL", 0, 16, 0 },
414 { "fixup_Mips_GOT", 0, 16, 0 },
415 { "fixup_Mips_PC16", 0, 16, 0 },
416 { "fixup_Mips_CALL16", 0, 16, 0 },
417 { "fixup_Mips_SHIFT5", 6, 5, 0 },
418 { "fixup_Mips_SHIFT6", 6, 5, 0 },
419 { "fixup_Mips_64", 0, 64, 0 },
420 { "fixup_Mips_TLSGD", 0, 16, 0 },
421 { "fixup_Mips_GOTTPREL", 0, 16, 0 },
422 { "fixup_Mips_TPREL_HI", 0, 16, 0 },
423 { "fixup_Mips_TPREL_LO", 0, 16, 0 },
424 { "fixup_Mips_TLSLDM", 0, 16, 0 },
425 { "fixup_Mips_DTPREL_HI", 0, 16, 0 },
426 { "fixup_Mips_DTPREL_LO", 0, 16, 0 },
427 { "fixup_Mips_Branch_PCRel", 0, 16, 0 },
428 { "fixup_Mips_GPOFF_HI", 0, 16, 0 },
429 { "fixup_MICROMIPS_GPOFF_HI",0, 16, 0 },
430 { "fixup_Mips_GPOFF_LO", 0, 16, 0 },
431 { "fixup_MICROMIPS_GPOFF_LO",0, 16, 0 },
432 { "fixup_Mips_GOT_PAGE", 0, 16, 0 },
433 { "fixup_Mips_GOT_OFST", 0, 16, 0 },
434 { "fixup_Mips_GOT_DISP", 0, 16, 0 },
435 { "fixup_Mips_HIGHER", 0, 16, 0 },
436 { "fixup_MICROMIPS_HIGHER", 0, 16, 0 },
437 { "fixup_Mips_HIGHEST", 0, 16, 0 },
438 { "fixup_MICROMIPS_HIGHEST", 0, 16, 0 },
439 { "fixup_Mips_GOT_HI16", 0, 16, 0 },
440 { "fixup_Mips_GOT_LO16", 0, 16, 0 },
441 { "fixup_Mips_CALL_HI16", 0, 16, 0 },
442 { "fixup_Mips_CALL_LO16", 0, 16, 0 },
443 { "fixup_Mips_PC18_S3", 0, 18, 0 },
444 { "fixup_MIPS_PC19_S2", 0, 19, 0 },
445 { "fixup_MIPS_PC21_S2", 0, 21, 0 },
446 { "fixup_MIPS_PC26_S2", 0, 26, 0 },
447 { "fixup_MIPS_PCHI16", 0, 16, 0 },
448 { "fixup_MIPS_PCLO16", 0, 16, 0 },
449 { "fixup_MICROMIPS_26_S1", 0, 26, 0 },
450 { "fixup_MICROMIPS_HI16", 0, 16, 0 },
451 { "fixup_MICROMIPS_LO16", 0, 16, 0 },
452 { "fixup_MICROMIPS_GOT16", 0, 16, 0 },
453 { "fixup_MICROMIPS_PC7_S1", 0, 7, 0 },
454 { "fixup_MICROMIPS_PC10_S1", 0, 10, 0 },
455 { "fixup_MICROMIPS_PC16_S1", 0, 16, 0 },
456 { "fixup_MICROMIPS_PC26_S1", 0, 26, 0 },
457 { "fixup_MICROMIPS_PC19_S2", 0, 19, 0 },
458 { "fixup_MICROMIPS_PC18_S3", 0, 18, 0 },
459 { "fixup_MICROMIPS_PC21_S1", 0, 21, 0 },
460 { "fixup_MICROMIPS_CALL16", 0, 16, 0 },
461 { "fixup_MICROMIPS_GOT_DISP", 0, 16, 0 },
462 { "fixup_MICROMIPS_GOT_PAGE", 0, 16, 0 },
463 { "fixup_MICROMIPS_GOT_OFST", 0, 16, 0 },
464 { "fixup_MICROMIPS_TLS_GD", 0, 16, 0 },
465 { "fixup_MICROMIPS_TLS_LDM", 0, 16, 0 },
466 { "fixup_MICROMIPS_TLS_DTPREL_HI16", 0, 16, 0 },
467 { "fixup_MICROMIPS_TLS_DTPREL_LO16", 0, 16, 0 },
468 { "fixup_MICROMIPS_GOTTPREL", 0, 16, 0 },
469 { "fixup_MICROMIPS_TLS_TPREL_HI16", 0, 16, 0 },
470 { "fixup_MICROMIPS_TLS_TPREL_LO16", 0, 16, 0 },
471 { "fixup_Mips_SUB", 0, 64, 0 },
472 { "fixup_MICROMIPS_SUB", 0, 64, 0 },
473 { "fixup_Mips_JALR", 0, 32, 0 },
474 { "fixup_MICROMIPS_JALR", 0, 32, 0 },
475 // clang-format on
476 };
477 static_assert(std::size(LittleEndianInfos) == Mips::NumTargetFixupKinds,
478 "Not all MIPS little endian fixup kinds added!");
479
480 const static MCFixupKindInfo BigEndianInfos[] = {
481 // This table *must* be in same the order of fixup_* kinds in
482 // MipsFixupKinds.h.
483 //
484 // name offset bits flags
485 // clang-format off
486 { "fixup_Mips_16", 16, 16, 0 },
487 { "fixup_Mips_32", 0, 32, 0 },
488 { "fixup_Mips_REL32", 0, 32, 0 },
489 { "fixup_Mips_GPREL32", 0, 32, 0 },
490 { "fixup_Mips_DTPREL32", 0, 32, 0 },
491 { "fixup_Mips_DTPREL64", 0, 64, 0 },
492 { "fixup_Mips_TPREL32", 0, 32, 0 },
493 { "fixup_Mips_TPREL64", 0, 64, 0 },
494 { "fixup_Mips_26", 6, 26, 0 },
495 { "fixup_Mips_HI16", 16, 16, 0 },
496 { "fixup_Mips_LO16", 16, 16, 0 },
497 { "fixup_Mips_AnyImm16", 16, 16, 0 },
498 { "fixup_Mips_GPREL16", 16, 16, 0 },
499 { "fixup_Mips_LITERAL", 16, 16, 0 },
500 { "fixup_Mips_GOT", 16, 16, 0 },
501 { "fixup_Mips_PC16", 16, 16, 0 },
502 { "fixup_Mips_CALL16", 16, 16, 0 },
503 { "fixup_Mips_SHIFT5", 21, 5, 0 },
504 { "fixup_Mips_SHIFT6", 21, 5, 0 },
505 { "fixup_Mips_64", 0, 64, 0 },
506 { "fixup_Mips_TLSGD", 16, 16, 0 },
507 { "fixup_Mips_GOTTPREL", 16, 16, 0 },
508 { "fixup_Mips_TPREL_HI", 16, 16, 0 },
509 { "fixup_Mips_TPREL_LO", 16, 16, 0 },
510 { "fixup_Mips_TLSLDM", 16, 16, 0 },
511 { "fixup_Mips_DTPREL_HI", 16, 16, 0 },
512 { "fixup_Mips_DTPREL_LO", 16, 16, 0 },
513 { "fixup_Mips_Branch_PCRel",16, 16, 0 },
514 { "fixup_Mips_GPOFF_HI", 16, 16, 0 },
515 { "fixup_MICROMIPS_GPOFF_HI", 16, 16, 0 },
516 { "fixup_Mips_GPOFF_LO", 16, 16, 0 },
517 { "fixup_MICROMIPS_GPOFF_LO", 16, 16, 0 },
518 { "fixup_Mips_GOT_PAGE", 16, 16, 0 },
519 { "fixup_Mips_GOT_OFST", 16, 16, 0 },
520 { "fixup_Mips_GOT_DISP", 16, 16, 0 },
521 { "fixup_Mips_HIGHER", 16, 16, 0 },
522 { "fixup_MICROMIPS_HIGHER", 16, 16, 0 },
523 { "fixup_Mips_HIGHEST", 16, 16, 0 },
524 { "fixup_MICROMIPS_HIGHEST",16, 16, 0 },
525 { "fixup_Mips_GOT_HI16", 16, 16, 0 },
526 { "fixup_Mips_GOT_LO16", 16, 16, 0 },
527 { "fixup_Mips_CALL_HI16", 16, 16, 0 },
528 { "fixup_Mips_CALL_LO16", 16, 16, 0 },
529 { "fixup_Mips_PC18_S3", 14, 18, 0 },
530 { "fixup_MIPS_PC19_S2", 13, 19, 0 },
531 { "fixup_MIPS_PC21_S2", 11, 21, 0 },
532 { "fixup_MIPS_PC26_S2", 6, 26, 0 },
533 { "fixup_MIPS_PCHI16", 16, 16, 0 },
534 { "fixup_MIPS_PCLO16", 16, 16, 0 },
535 { "fixup_MICROMIPS_26_S1", 6, 26, 0 },
536 { "fixup_MICROMIPS_HI16", 16, 16, 0 },
537 { "fixup_MICROMIPS_LO16", 16, 16, 0 },
538 { "fixup_MICROMIPS_GOT16", 16, 16, 0 },
539 { "fixup_MICROMIPS_PC7_S1", 9, 7, 0 },
540 { "fixup_MICROMIPS_PC10_S1", 6, 10, 0 },
541 { "fixup_MICROMIPS_PC16_S1",16, 16, 0 },
542 { "fixup_MICROMIPS_PC26_S1", 6, 26, 0 },
543 { "fixup_MICROMIPS_PC19_S2",13, 19, 0 },
544 { "fixup_MICROMIPS_PC18_S3",14, 18, 0 },
545 { "fixup_MICROMIPS_PC21_S1",11, 21, 0 },
546 { "fixup_MICROMIPS_CALL16", 16, 16, 0 },
547 { "fixup_MICROMIPS_GOT_DISP", 16, 16, 0 },
548 { "fixup_MICROMIPS_GOT_PAGE", 16, 16, 0 },
549 { "fixup_MICROMIPS_GOT_OFST", 16, 16, 0 },
550 { "fixup_MICROMIPS_TLS_GD", 16, 16, 0 },
551 { "fixup_MICROMIPS_TLS_LDM", 16, 16, 0 },
552 { "fixup_MICROMIPS_TLS_DTPREL_HI16", 16, 16, 0 },
553 { "fixup_MICROMIPS_TLS_DTPREL_LO16", 16, 16, 0 },
554 { "fixup_MICROMIPS_GOTTPREL", 16, 16, 0 },
555 { "fixup_MICROMIPS_TLS_TPREL_HI16", 16, 16, 0 },
556 { "fixup_MICROMIPS_TLS_TPREL_LO16", 16, 16, 0 },
557 { "fixup_Mips_SUB", 0, 64, 0 },
558 { "fixup_MICROMIPS_SUB", 0, 64, 0 },
559 { "fixup_Mips_JALR", 0, 32, 0 },
560 { "fixup_MICROMIPS_JALR", 0, 32, 0 },
561 // clang-format on
562 };
563 static_assert(std::size(BigEndianInfos) == Mips::NumTargetFixupKinds,
564 "Not all MIPS big endian fixup kinds added!");
565
566 if (mc::isRelocation(Kind))
567 return {};
568 if (Kind < FirstTargetFixupKind)
570
572 "Invalid kind!");
573
575 return LittleEndianInfos[Kind - FirstTargetFixupKind];
576 return BigEndianInfos[Kind - FirstTargetFixupKind];
577}
578
579/// WriteNopData - Write an (optimal) nop sequence of Count bytes
580/// to the given output. If the target cannot generate such a sequence,
581/// it should return an error.
582///
583/// \return - True on success.
585 const MCSubtargetInfo *STI) const {
586 // Check for a less than instruction size number of bytes
587 // FIXME: 16 bit instructions are not handled yet here.
588 // We shouldn't be using a hard coded number for instruction size.
589
590 // If the count is not 4-byte aligned, we must be writing data into the text
591 // section (otherwise we have unaligned instructions, and thus have far
592 // bigger problems), so just write zeros instead.
593 OS.write_zeros(Count);
594 return true;
595}
596
597namespace {
598
599class WindowsMipsAsmBackend : public MipsAsmBackend {
600public:
601 WindowsMipsAsmBackend(const Target &T, const MCRegisterInfo &MRI,
602 const MCSubtargetInfo &STI)
603 : MipsAsmBackend(T, MRI, STI.getTargetTriple(), STI.getCPU(), false) {}
604
605 std::unique_ptr<MCObjectTargetWriter>
606 createObjectTargetWriter() const override {
608 }
609};
610
611} // end anonymous namespace
612
614 const MCSubtargetInfo &STI,
615 const MCRegisterInfo &MRI,
616 const MCTargetOptions &Options) {
617 const Triple &TheTriple = STI.getTargetTriple();
618 if (TheTriple.isOSWindows() && TheTriple.isOSBinFormatCOFF())
619 return new WindowsMipsAsmBackend(T, MRI, STI);
620
622 Options.getABIName());
623 return new MipsAsmBackend(T, MRI, STI.getTargetTriple(), STI.getCPU(),
624 ABI.IsN32());
625}
unsigned const MachineRegisterInfo * MRI
static uint64_t adjustFixupValue(const MCFixup &Fixup, const MCValue &Target, uint64_t Value, MCContext &Ctx, const Triple &TheTriple, bool IsResolved)
static bool shouldForceRelocation(const MCFixup &Fixup)
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
static LVOptions Options
Definition LVOptions.cpp:25
#define F(x, y, z)
Definition MD5.cpp:55
#define T
static unsigned adjustFixupValue(const MCFixup &Fixup, uint64_t Value, MCContext &Ctx)
static unsigned calculateMMLEIndex(unsigned i)
static bool needsMMLEByteOrder(unsigned Kind)
PowerPC TLS Dynamic Call Fixup
This file implements the StringSwitch template, which mimics a switch() statement whose cases are str...
Generic interface to target specific assembler backends.
const llvm::endianness Endian
virtual MCFixupKindInfo getFixupKindInfo(MCFixupKind Kind) const
Get information on a fixup kind.
MCContext & getContext() const
virtual std::optional< MCFixupKind > getFixupKind(StringRef Name) const
Map a relocation name used in .reloc to a fixup kind.
void maybeAddReloc(const MCFragment &, const MCFixup &, const MCValue &, uint64_t &Value, bool IsResolved)
Context object for machine code objects.
Definition MCContext.h:83
Encode information on a single operation to perform on a byte sequence (e.g., an encoded instruction)...
Definition MCFixup.h:61
MCRegisterInfo base class - We assume that the target defines a static array of MCRegisterDesc object...
Generic base class for all target subtargets.
const Triple & getTargetTriple() const
StringRef getCPU() const
static MipsABIInfo computeTargetABI(const Triple &TT, StringRef ABIName)
bool writeNopData(raw_ostream &OS, uint64_t Count, const MCSubtargetInfo *STI) const override
WriteNopData - Write an (optimal) nop sequence of Count bytes to the given output.
MCFixupKindInfo getFixupKindInfo(MCFixupKind Kind) const override
Get information on a fixup kind.
std::optional< MCFixupKind > getFixupKind(StringRef Name) const override
Map a relocation name used in .reloc to a fixup kind.
void applyFixup(const MCFragment &, const MCFixup &, const MCValue &Target, uint8_t *Data, uint64_t Value, bool IsResolved) override
ApplyFixup - Apply the Value for given Fixup into the provided data fragment, at the offset specified...
std::unique_ptr< MCObjectTargetWriter > createObjectTargetWriter() const override
StringRef - Represent a constant reference to a string, i.e.
Definition StringRef.h:55
A switch()-like statement whose cases are string literals.
StringSwitch & Case(StringLiteral S, T Value)
Target - Wrapper for Target specific information.
Triple - Helper class for working with autoconf configuration names.
Definition Triple.h:47
bool isOSBinFormatCOFF() const
Tests whether the OS uses the COFF binary format.
Definition Triple.h:774
bool isOSWindows() const
Tests whether the OS is Windows.
Definition Triple.h:679
The instances of the Type class are immutable: once they are created, they are never changed.
Definition Type.h:45
LLVM Value Representation.
Definition Value.h:75
This class implements an extremely fast bulk output stream that can only output to a stream.
Definition raw_ostream.h:53
raw_ostream & write_zeros(unsigned NumZeros)
write_zeros - Insert 'NumZeros' nulls.
@ fixup_MICROMIPS_TLS_TPREL_LO16
@ fixup_MICROMIPS_TLS_TPREL_HI16
@ fixup_MICROMIPS_TLS_DTPREL_HI16
@ fixup_MICROMIPS_TLS_DTPREL_LO16
bool isRelocation(MCFixupKind FixupKind)
Definition MCFixup.h:130
This is an optimization pass for GlobalISel generic memory operations.
std::unique_ptr< MCObjectTargetWriter > createMipsELFObjectWriter(const Triple &TT, bool IsN32)
Construct a Mips ELF object writer.
constexpr bool isInt(int64_t x)
Checks if an integer fits into the given bit width.
Definition MathExtras.h:174
static StringRef getCPU(StringRef CPU)
Processes a CPU name.
std::unique_ptr< MCObjectTargetWriter > createMipsWinCOFFObjectWriter()
Construct a Mips Win COFF object writer.
uint16_t MCFixupKind
Extensible enumeration to represent the type of a fixup.
Definition MCFixup.h:22
static Lanai::Fixups FixupKind(const MCExpr *Expr)
FunctionAddr VTableAddr Count
Definition InstrProf.h:139
constexpr bool isUInt(uint64_t x)
Checks if an unsigned integer fits into the given bit width.
Definition MathExtras.h:198
@ FirstTargetFixupKind
Definition MCFixup.h:44
@ FirstLiteralRelocationKind
Definition MCFixup.h:29
@ FK_Data_8
A eight-byte fixup.
Definition MCFixup.h:37
@ FK_Data_4
A four-byte fixup.
Definition MCFixup.h:36
@ FK_NONE
A no-op fixup.
Definition MCFixup.h:33
@ FK_Data_2
A two-byte fixup.
Definition MCFixup.h:35
FunctionAddr VTableAddr uintptr_t uintptr_t Data
Definition InstrProf.h:189
MCAsmBackend * createMipsAsmBackend(const Target &T, const MCSubtargetInfo &STI, const MCRegisterInfo &MRI, const MCTargetOptions &Options)
Target independent information on a fixup kind.
uint8_t TargetSize
The number of bits written by this fixup.