LLVM 22.0.0git
PHIElimination.cpp
Go to the documentation of this file.
1//===- PhiElimination.cpp - Eliminate PHI nodes by inserting copies -------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This pass eliminates machine instruction PHI nodes by inserting copy
10// instructions. This destroys SSA information, but is the desired input for
11// some register allocators.
12//
13//===----------------------------------------------------------------------===//
14
16#include "PHIEliminationUtils.h"
17#include "llvm/ADT/DenseMap.h"
19#include "llvm/ADT/Statistic.h"
40#include "llvm/Pass.h"
42#include "llvm/Support/Debug.h"
44#include <cassert>
45#include <iterator>
46#include <utility>
47
48using namespace llvm;
49
50#define DEBUG_TYPE "phi-node-elimination"
51
52static cl::opt<bool>
53 DisableEdgeSplitting("disable-phi-elim-edge-splitting", cl::init(false),
55 cl::desc("Disable critical edge splitting "
56 "during PHI elimination"));
57
58static cl::opt<bool>
59 SplitAllCriticalEdges("phi-elim-split-all-critical-edges", cl::init(false),
61 cl::desc("Split all critical edges during "
62 "PHI elimination"));
63
65 "no-phi-elim-live-out-early-exit", cl::init(false), cl::Hidden,
66 cl::desc("Do not use an early exit if isLiveOutPastPHIs returns true."));
67
68namespace {
69
70class PHIEliminationImpl {
71 MachineRegisterInfo *MRI = nullptr; // Machine register information
72 LiveVariables *LV = nullptr;
73 LiveIntervals *LIS = nullptr;
74 MachineLoopInfo *MLI = nullptr;
75 MachineDominatorTree *MDT = nullptr;
76 MachinePostDominatorTree *PDT = nullptr;
77
78 /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions
79 /// in predecessor basic blocks.
80 bool EliminatePHINodes(MachineFunction &MF, MachineBasicBlock &MBB);
81
82 void LowerPHINode(MachineBasicBlock &MBB,
84 bool AllEdgesCritical);
85
86 /// analyzePHINodes - Gather information about the PHI nodes in
87 /// here. In particular, we want to map the number of uses of a virtual
88 /// register which is used in a PHI node. We map that to the BB the
89 /// vreg is coming from. This is used later to determine when the vreg
90 /// is killed in the BB.
91 void analyzePHINodes(const MachineFunction &MF);
92
93 /// Split critical edges where necessary for good coalescer performance.
94 bool SplitPHIEdges(MachineFunction &MF, MachineBasicBlock &MBB,
95 MachineLoopInfo *MLI,
96 std::vector<SparseBitVector<>> *LiveInSets,
98
99 // These functions are temporary abstractions around LiveVariables and
100 // LiveIntervals, so they can go away when LiveVariables does.
101 bool isLiveIn(Register Reg, const MachineBasicBlock *MBB);
102 bool isLiveOutPastPHIs(Register Reg, const MachineBasicBlock *MBB);
103
104 using BBVRegPair = std::pair<unsigned, Register>;
105 using VRegPHIUse = DenseMap<BBVRegPair, unsigned>;
106
107 // Count the number of non-undef PHI uses of each register in each BB.
108 VRegPHIUse VRegPHIUseCount;
109
110 // Defs of PHI sources which are implicit_def.
112
113 // Map reusable lowered PHI node -> incoming join register.
114 using LoweredPHIMap =
116 LoweredPHIMap LoweredPHIs;
117
118 MachineFunctionPass *P = nullptr;
119 MachineFunctionAnalysisManager *MFAM = nullptr;
120
121public:
122 PHIEliminationImpl(MachineFunctionPass *P) : P(P) {
123 auto *LVWrapper = P->getAnalysisIfAvailable<LiveVariablesWrapperPass>();
124 auto *LISWrapper = P->getAnalysisIfAvailable<LiveIntervalsWrapperPass>();
125 auto *MLIWrapper = P->getAnalysisIfAvailable<MachineLoopInfoWrapperPass>();
126 auto *MDTWrapper =
127 P->getAnalysisIfAvailable<MachineDominatorTreeWrapperPass>();
128 auto *PDTWrapper =
129 P->getAnalysisIfAvailable<MachinePostDominatorTreeWrapperPass>();
130 LV = LVWrapper ? &LVWrapper->getLV() : nullptr;
131 LIS = LISWrapper ? &LISWrapper->getLIS() : nullptr;
132 MLI = MLIWrapper ? &MLIWrapper->getLI() : nullptr;
133 MDT = MDTWrapper ? &MDTWrapper->getDomTree() : nullptr;
134 PDT = PDTWrapper ? &PDTWrapper->getPostDomTree() : nullptr;
135 }
136
137 PHIEliminationImpl(MachineFunction &MF, MachineFunctionAnalysisManager &AM)
138 : LV(AM.getCachedResult<LiveVariablesAnalysis>(MF)),
139 LIS(AM.getCachedResult<LiveIntervalsAnalysis>(MF)),
140 MLI(AM.getCachedResult<MachineLoopAnalysis>(MF)),
141 MDT(AM.getCachedResult<MachineDominatorTreeAnalysis>(MF)),
142 PDT(AM.getCachedResult<MachinePostDominatorTreeAnalysis>(MF)),
143 MFAM(&AM) {}
144
145 bool run(MachineFunction &MF);
146};
147
148class PHIElimination : public MachineFunctionPass {
149public:
150 static char ID; // Pass identification, replacement for typeid
151
152 PHIElimination() : MachineFunctionPass(ID) {
154 }
155
156 bool runOnMachineFunction(MachineFunction &MF) override {
157 PHIEliminationImpl Impl(this);
158 return Impl.run(MF);
159 }
160
161 MachineFunctionProperties getSetProperties() const override {
162 return MachineFunctionProperties().setNoPHIs();
163 }
164
165 void getAnalysisUsage(AnalysisUsage &AU) const override;
166};
167
168} // end anonymous namespace
169
173 PHIEliminationImpl Impl(MF, MFAM);
174 bool Changed = Impl.run(MF);
175 if (!Changed)
176 return PreservedAnalyses::all();
178 PA.preserve<LiveIntervalsAnalysis>();
179 PA.preserve<LiveVariablesAnalysis>();
180 PA.preserve<SlotIndexesAnalysis>();
181 PA.preserve<MachineDominatorTreeAnalysis>();
183 PA.preserve<MachineLoopAnalysis>();
184 return PA;
185}
186
187STATISTIC(NumLowered, "Number of phis lowered");
188STATISTIC(NumCriticalEdgesSplit, "Number of critical edges split");
189STATISTIC(NumReused, "Number of reused lowered phis");
190
191char PHIElimination::ID = 0;
192
193char &llvm::PHIEliminationID = PHIElimination::ID;
194
196 "Eliminate PHI nodes for register allocation", false,
197 false)
200 "Eliminate PHI nodes for register allocation", false, false)
201
202void PHIElimination::getAnalysisUsage(AnalysisUsage &AU) const {
203 AU.addUsedIfAvailable<LiveVariablesWrapperPass>();
204 AU.addPreserved<LiveVariablesWrapperPass>();
205 AU.addPreserved<SlotIndexesWrapperPass>();
206 AU.addPreserved<LiveIntervalsWrapperPass>();
207 AU.addPreserved<MachineDominatorTreeWrapperPass>();
208 AU.addPreserved<MachinePostDominatorTreeWrapperPass>();
209 AU.addPreserved<MachineLoopInfoWrapperPass>();
211}
212
213bool PHIEliminationImpl::run(MachineFunction &MF) {
214 MRI = &MF.getRegInfo();
215
216 MachineDomTreeUpdater MDTU(MDT, PDT,
217 MachineDomTreeUpdater::UpdateStrategy::Lazy);
218
219 bool Changed = false;
220
221 // Split critical edges to help the coalescer.
222 if (!DisableEdgeSplitting && (LV || LIS)) {
223 // A set of live-in regs for each MBB which is used to update LV
224 // efficiently also with large functions.
225 std::vector<SparseBitVector<>> LiveInSets;
226 if (LV) {
227 LiveInSets.resize(MF.size());
228 for (unsigned Index = 0, e = MRI->getNumVirtRegs(); Index != e; ++Index) {
229 // Set the bit for this register for each MBB where it is
230 // live-through or live-in (killed).
231 Register VirtReg = Register::index2VirtReg(Index);
232 MachineInstr *DefMI = MRI->getVRegDef(VirtReg);
233 if (!DefMI)
234 continue;
235 LiveVariables::VarInfo &VI = LV->getVarInfo(VirtReg);
236 SparseBitVector<>::iterator AliveBlockItr = VI.AliveBlocks.begin();
237 SparseBitVector<>::iterator EndItr = VI.AliveBlocks.end();
238 while (AliveBlockItr != EndItr) {
239 unsigned BlockNum = *(AliveBlockItr++);
240 LiveInSets[BlockNum].set(Index);
241 }
242 // The register is live into an MBB in which it is killed but not
243 // defined. See comment for VarInfo in LiveVariables.h.
244 MachineBasicBlock *DefMBB = DefMI->getParent();
245 if (VI.Kills.size() > 1 ||
246 (!VI.Kills.empty() && VI.Kills.front()->getParent() != DefMBB))
247 for (auto *MI : VI.Kills)
248 LiveInSets[MI->getParent()->getNumber()].set(Index);
249 }
250 }
251
252 for (auto &MBB : MF)
253 Changed |=
254 SplitPHIEdges(MF, MBB, MLI, (LV ? &LiveInSets : nullptr), MDTU);
255 }
256
257 // This pass takes the function out of SSA form.
258 MRI->leaveSSA();
259
260 // Populate VRegPHIUseCount
261 if (LV || LIS)
262 analyzePHINodes(MF);
263
264 // Eliminate PHI instructions by inserting copies into predecessor blocks.
265 for (auto &MBB : MF)
266 Changed |= EliminatePHINodes(MF, MBB);
267
268 // Remove dead IMPLICIT_DEF instructions.
269 for (MachineInstr *DefMI : ImpDefs) {
270 Register DefReg = DefMI->getOperand(0).getReg();
271 if (MRI->use_nodbg_empty(DefReg)) {
272 if (LIS)
275 }
276 }
277
278 // Clean up the lowered PHI instructions.
279 for (auto &I : LoweredPHIs) {
280 if (LIS)
281 LIS->RemoveMachineInstrFromMaps(*I.first);
282 MF.deleteMachineInstr(I.first);
283 }
284
285 LoweredPHIs.clear();
286 ImpDefs.clear();
287 VRegPHIUseCount.clear();
288
289 MF.getProperties().setNoPHIs();
290
291 return Changed;
292}
293
294/// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions in
295/// predecessor basic blocks.
296bool PHIEliminationImpl::EliminatePHINodes(MachineFunction &MF,
298 if (MBB.empty() || !MBB.front().isPHI())
299 return false; // Quick exit for basic blocks without PHIs.
300
301 // Get an iterator to the last PHI node.
303 std::prev(MBB.SkipPHIsAndLabels(MBB.begin()));
304
305 // If all incoming edges are critical, we try to deduplicate identical PHIs so
306 // that we generate fewer copies. If at any edge is non-critical, we either
307 // have less than two predecessors (=> no PHIs) or a predecessor has only us
308 // as a successor (=> identical PHI node can't occur in different block).
309 bool AllEdgesCritical = MBB.pred_size() >= 2;
310 for (MachineBasicBlock *Pred : MBB.predecessors()) {
311 if (Pred->succ_size() < 2) {
312 AllEdgesCritical = false;
313 break;
314 }
315 }
316
317 while (MBB.front().isPHI())
318 LowerPHINode(MBB, LastPHIIt, AllEdgesCritical);
319
320 return true;
321}
322
323/// Return true if all defs of VirtReg are implicit-defs.
324/// This includes registers with no defs.
325static bool isImplicitlyDefined(Register VirtReg,
326 const MachineRegisterInfo &MRI) {
327 for (MachineInstr &DI : MRI.def_instructions(VirtReg))
328 if (!DI.isImplicitDef())
329 return false;
330 return true;
331}
332
333/// Return true if all sources of the phi node are implicit_def's, or undef's.
334static bool allPhiOperandsUndefined(const MachineInstr &MPhi,
335 const MachineRegisterInfo &MRI) {
336 for (unsigned I = 1, E = MPhi.getNumOperands(); I != E; I += 2) {
337 const MachineOperand &MO = MPhi.getOperand(I);
338 if (!isImplicitlyDefined(MO.getReg(), MRI) && !MO.isUndef())
339 return false;
340 }
341 return true;
342}
343/// LowerPHINode - Lower the PHI node at the top of the specified block.
344void PHIEliminationImpl::LowerPHINode(MachineBasicBlock &MBB,
346 bool AllEdgesCritical) {
347 ++NumLowered;
348
349 MachineBasicBlock::iterator AfterPHIsIt = std::next(LastPHIIt);
350
351 // Unlink the PHI node from the basic block, but don't delete the PHI yet.
352 MachineInstr *MPhi = MBB.remove(&*MBB.begin());
353
354 unsigned NumSrcs = (MPhi->getNumOperands() - 1) / 2;
355 Register DestReg = MPhi->getOperand(0).getReg();
356 assert(MPhi->getOperand(0).getSubReg() == 0 && "Can't handle sub-reg PHIs");
357 bool isDead = MPhi->getOperand(0).isDead();
358
359 // Create a new register for the incoming PHI arguments.
361 Register IncomingReg;
362 bool EliminateNow = true; // delay elimination of nodes in LoweredPHIs
363 bool reusedIncoming = false; // Is IncomingReg reused from an earlier PHI?
364
365 // Insert a register to register copy at the top of the current block (but
366 // after any remaining phi nodes) which copies the new incoming register
367 // into the phi node destination.
368 MachineInstr *PHICopy = nullptr;
370 if (allPhiOperandsUndefined(*MPhi, *MRI))
371 // If all sources of a PHI node are implicit_def or undef uses, just emit an
372 // implicit_def instead of a copy.
373 PHICopy = BuildMI(MBB, AfterPHIsIt, MPhi->getDebugLoc(),
374 TII->get(TargetOpcode::IMPLICIT_DEF), DestReg);
375 else {
376 // Can we reuse an earlier PHI node? This only happens for critical edges,
377 // typically those created by tail duplication. Typically, an identical PHI
378 // node can't occur, so avoid hashing/storing such PHIs, which is somewhat
379 // expensive.
380 Register *Entry = nullptr;
381 if (AllEdgesCritical)
382 Entry = &LoweredPHIs[MPhi];
383 if (Entry && *Entry) {
384 // An identical PHI node was already lowered. Reuse the incoming register.
385 IncomingReg = *Entry;
386 reusedIncoming = true;
387 ++NumReused;
388 LLVM_DEBUG(dbgs() << "Reusing " << printReg(IncomingReg) << " for "
389 << *MPhi);
390 } else {
391 const TargetRegisterClass *RC = MF.getRegInfo().getRegClass(DestReg);
392 IncomingReg = MF.getRegInfo().createVirtualRegister(RC);
393 if (Entry) {
394 EliminateNow = false;
395 *Entry = IncomingReg;
396 }
397 }
398
399 // Give the target possiblity to handle special cases fallthrough otherwise
400 PHICopy = TII->createPHIDestinationCopy(
401 MBB, AfterPHIsIt, MPhi->getDebugLoc(), IncomingReg, DestReg);
402 }
403
404 if (MPhi->peekDebugInstrNum()) {
405 // If referred to by debug-info, store where this PHI was.
407 unsigned ID = MPhi->peekDebugInstrNum();
408 auto P = MachineFunction::DebugPHIRegallocPos(&MBB, IncomingReg, 0);
409 auto Res = MF->DebugPHIPositions.insert({ID, P});
410 assert(Res.second);
411 (void)Res;
412 }
413
414 // Update live variable information if there is any.
415 if (LV) {
416 if (IncomingReg) {
417 LiveVariables::VarInfo &VI = LV->getVarInfo(IncomingReg);
418
419 MachineInstr *OldKill = nullptr;
420 bool IsPHICopyAfterOldKill = false;
421
422 if (reusedIncoming && (OldKill = VI.findKill(&MBB))) {
423 // Calculate whether the PHICopy is after the OldKill.
424 // In general, the PHICopy is inserted as the first non-phi instruction
425 // by default, so it's before the OldKill. But some Target hooks for
426 // createPHIDestinationCopy() may modify the default insert position of
427 // PHICopy.
428 for (auto I = MBB.SkipPHIsAndLabels(MBB.begin()), E = MBB.end(); I != E;
429 ++I) {
430 if (I == PHICopy)
431 break;
432
433 if (I == OldKill) {
434 IsPHICopyAfterOldKill = true;
435 break;
436 }
437 }
438 }
439
440 // When we are reusing the incoming register and it has been marked killed
441 // by OldKill, if the PHICopy is after the OldKill, we should remove the
442 // killed flag from OldKill.
443 if (IsPHICopyAfterOldKill) {
444 LLVM_DEBUG(dbgs() << "Remove old kill from " << *OldKill);
445 LV->removeVirtualRegisterKilled(IncomingReg, *OldKill);
447 }
448
449 // Add information to LiveVariables to know that the first used incoming
450 // value or the resued incoming value whose PHICopy is after the OldKIll
451 // is killed. Note that because the value is defined in several places
452 // (once each for each incoming block), the "def" block and instruction
453 // fields for the VarInfo is not filled in.
454 if (!OldKill || IsPHICopyAfterOldKill)
455 LV->addVirtualRegisterKilled(IncomingReg, *PHICopy);
456 }
457
458 // Since we are going to be deleting the PHI node, if it is the last use of
459 // any registers, or if the value itself is dead, we need to move this
460 // information over to the new copy we just inserted.
462
463 // If the result is dead, update LV.
464 if (isDead) {
465 LV->addVirtualRegisterDead(DestReg, *PHICopy);
466 LV->removeVirtualRegisterDead(DestReg, *MPhi);
467 }
468 }
469
470 // Update LiveIntervals for the new copy or implicit def.
471 if (LIS) {
472 SlotIndex DestCopyIndex = LIS->InsertMachineInstrInMaps(*PHICopy);
473
474 SlotIndex MBBStartIndex = LIS->getMBBStartIdx(&MBB);
475 if (IncomingReg) {
476 // Add the region from the beginning of MBB to the copy instruction to
477 // IncomingReg's live interval.
478 LiveInterval &IncomingLI = LIS->getOrCreateEmptyInterval(IncomingReg);
479 VNInfo *IncomingVNI = IncomingLI.getVNInfoAt(MBBStartIndex);
480 if (!IncomingVNI)
481 IncomingVNI =
482 IncomingLI.getNextValue(MBBStartIndex, LIS->getVNInfoAllocator());
484 MBBStartIndex, DestCopyIndex.getRegSlot(), IncomingVNI));
485 }
486
487 LiveInterval &DestLI = LIS->getInterval(DestReg);
488 assert(!DestLI.empty() && "PHIs should have non-empty LiveIntervals.");
489
490 SlotIndex NewStart = DestCopyIndex.getRegSlot();
491
492 SmallVector<LiveRange *> ToUpdate({&DestLI});
493 for (auto &SR : DestLI.subranges())
494 ToUpdate.push_back(&SR);
495
496 for (auto LR : ToUpdate) {
497 auto DestSegment = LR->find(MBBStartIndex);
498 assert(DestSegment != LR->end() &&
499 "PHI destination must be live in block");
500
501 if (LR->endIndex().isDead()) {
502 // A dead PHI's live range begins and ends at the start of the MBB, but
503 // the lowered copy, which will still be dead, needs to begin and end at
504 // the copy instruction.
505 VNInfo *OrigDestVNI = LR->getVNInfoAt(DestSegment->start);
506 assert(OrigDestVNI && "PHI destination should be live at block entry.");
507 LR->removeSegment(DestSegment->start, DestSegment->start.getDeadSlot());
508 LR->createDeadDef(NewStart, LIS->getVNInfoAllocator());
509 LR->removeValNo(OrigDestVNI);
510 continue;
511 }
512
513 // Destination copies are not inserted in the same order as the PHI nodes
514 // they replace. Hence the start of the live range may need to be adjusted
515 // to match the actual slot index of the copy.
516 if (DestSegment->start > NewStart) {
517 VNInfo *VNI = LR->getVNInfoAt(DestSegment->start);
518 assert(VNI && "value should be defined for known segment");
519 LR->addSegment(
520 LiveInterval::Segment(NewStart, DestSegment->start, VNI));
521 } else if (DestSegment->start < NewStart) {
522 assert(DestSegment->start >= MBBStartIndex);
523 assert(DestSegment->end >= DestCopyIndex.getRegSlot());
524 LR->removeSegment(DestSegment->start, NewStart);
525 }
526 VNInfo *DestVNI = LR->getVNInfoAt(NewStart);
527 assert(DestVNI && "PHI destination should be live at its definition.");
528 DestVNI->def = NewStart;
529 }
530 }
531
532 // Adjust the VRegPHIUseCount map to account for the removal of this PHI node.
533 if (LV || LIS) {
534 for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2) {
535 if (!MPhi->getOperand(i).isUndef()) {
536 --VRegPHIUseCount[BBVRegPair(
537 MPhi->getOperand(i + 1).getMBB()->getNumber(),
538 MPhi->getOperand(i).getReg())];
539 }
540 }
541 }
542
543 // Now loop over all of the incoming arguments, changing them to copy into the
544 // IncomingReg register in the corresponding predecessor basic block.
546 for (int i = NumSrcs - 1; i >= 0; --i) {
547 Register SrcReg = MPhi->getOperand(i * 2 + 1).getReg();
548 unsigned SrcSubReg = MPhi->getOperand(i * 2 + 1).getSubReg();
549 bool SrcUndef = MPhi->getOperand(i * 2 + 1).isUndef() ||
550 isImplicitlyDefined(SrcReg, *MRI);
551 assert(SrcReg.isVirtual() &&
552 "Machine PHI Operands must all be virtual registers!");
553
554 // Get the MachineBasicBlock equivalent of the BasicBlock that is the source
555 // path the PHI.
556 MachineBasicBlock &opBlock = *MPhi->getOperand(i * 2 + 2).getMBB();
557
558 // Check to make sure we haven't already emitted the copy for this block.
559 // This can happen because PHI nodes may have multiple entries for the same
560 // basic block.
561 if (!MBBsInsertedInto.insert(&opBlock).second)
562 continue; // If the copy has already been emitted, we're done.
563
564 MachineInstr *SrcRegDef = MRI->getVRegDef(SrcReg);
565 if (SrcRegDef && TII->isUnspillableTerminator(SrcRegDef)) {
566 assert(SrcRegDef->getOperand(0).isReg() &&
567 SrcRegDef->getOperand(0).isDef() &&
568 "Expected operand 0 to be a reg def!");
569 // Now that the PHI's use has been removed (as the instruction was
570 // removed) there should be no other uses of the SrcReg.
571 assert(MRI->use_empty(SrcReg) &&
572 "Expected a single use from UnspillableTerminator");
573 SrcRegDef->getOperand(0).setReg(IncomingReg);
574
575 // Update LiveVariables.
576 if (LV) {
577 LiveVariables::VarInfo &SrcVI = LV->getVarInfo(SrcReg);
578 LiveVariables::VarInfo &IncomingVI = LV->getVarInfo(IncomingReg);
579 IncomingVI.AliveBlocks = std::move(SrcVI.AliveBlocks);
580 SrcVI.AliveBlocks.clear();
581 }
582
583 continue;
584 }
585
586 // Find a safe location to insert the copy, this may be the first terminator
587 // in the block (or end()).
589 findPHICopyInsertPoint(&opBlock, &MBB, SrcReg);
590
591 // Insert the copy.
592 MachineInstr *NewSrcInstr = nullptr;
593 if (!reusedIncoming && IncomingReg) {
594 if (SrcUndef) {
595 // The source register is undefined, so there is no need for a real
596 // COPY, but we still need to ensure joint dominance by defs.
597 // Insert an IMPLICIT_DEF instruction.
598 NewSrcInstr =
599 BuildMI(opBlock, InsertPos, MPhi->getDebugLoc(),
600 TII->get(TargetOpcode::IMPLICIT_DEF), IncomingReg);
601
602 // Clean up the old implicit-def, if there even was one.
603 if (MachineInstr *DefMI = MRI->getVRegDef(SrcReg))
604 if (DefMI->isImplicitDef())
605 ImpDefs.insert(DefMI);
606 } else {
607 // Delete the debug location, since the copy is inserted into a
608 // different basic block.
609 NewSrcInstr = TII->createPHISourceCopy(opBlock, InsertPos, nullptr,
610 SrcReg, SrcSubReg, IncomingReg);
611 }
612 }
613
614 // We only need to update the LiveVariables kill of SrcReg if this was the
615 // last PHI use of SrcReg to be lowered on this CFG edge and it is not live
616 // out of the predecessor. We can also ignore undef sources.
617 if (LV && !SrcUndef &&
618 !VRegPHIUseCount[BBVRegPair(opBlock.getNumber(), SrcReg)] &&
619 !LV->isLiveOut(SrcReg, opBlock)) {
620 // We want to be able to insert a kill of the register if this PHI (aka,
621 // the copy we just inserted) is the last use of the source value. Live
622 // variable analysis conservatively handles this by saying that the value
623 // is live until the end of the block the PHI entry lives in. If the value
624 // really is dead at the PHI copy, there will be no successor blocks which
625 // have the value live-in.
626
627 // Okay, if we now know that the value is not live out of the block, we
628 // can add a kill marker in this block saying that it kills the incoming
629 // value!
630
631 // In our final twist, we have to decide which instruction kills the
632 // register. In most cases this is the copy, however, terminator
633 // instructions at the end of the block may also use the value. In this
634 // case, we should mark the last such terminator as being the killing
635 // block, not the copy.
636 MachineBasicBlock::iterator KillInst = opBlock.end();
637 for (MachineBasicBlock::iterator Term = InsertPos; Term != opBlock.end();
638 ++Term) {
639 if (Term->readsRegister(SrcReg, /*TRI=*/nullptr))
640 KillInst = Term;
641 }
642
643 if (KillInst == opBlock.end()) {
644 // No terminator uses the register.
645
646 if (reusedIncoming || !IncomingReg) {
647 // We may have to rewind a bit if we didn't insert a copy this time.
648 KillInst = InsertPos;
649 while (KillInst != opBlock.begin()) {
650 --KillInst;
651 if (KillInst->isDebugInstr())
652 continue;
653 if (KillInst->readsRegister(SrcReg, /*TRI=*/nullptr))
654 break;
655 }
656 } else {
657 // We just inserted this copy.
658 KillInst = NewSrcInstr;
659 }
660 }
661 assert(KillInst->readsRegister(SrcReg, /*TRI=*/nullptr) &&
662 "Cannot find kill instruction");
663
664 // Finally, mark it killed.
665 LV->addVirtualRegisterKilled(SrcReg, *KillInst);
666
667 // This vreg no longer lives all of the way through opBlock.
668 unsigned opBlockNum = opBlock.getNumber();
669 LV->getVarInfo(SrcReg).AliveBlocks.reset(opBlockNum);
670 }
671
672 if (LIS) {
673 if (NewSrcInstr) {
674 LIS->InsertMachineInstrInMaps(*NewSrcInstr);
675 LIS->addSegmentToEndOfBlock(IncomingReg, *NewSrcInstr);
676 }
677
678 if (!SrcUndef &&
679 !VRegPHIUseCount[BBVRegPair(opBlock.getNumber(), SrcReg)]) {
680 LiveInterval &SrcLI = LIS->getInterval(SrcReg);
681
682 bool isLiveOut = false;
683 for (MachineBasicBlock *Succ : opBlock.successors()) {
684 SlotIndex startIdx = LIS->getMBBStartIdx(Succ);
685 VNInfo *VNI = SrcLI.getVNInfoAt(startIdx);
686
687 // Definitions by other PHIs are not truly live-in for our purposes.
688 if (VNI && VNI->def != startIdx) {
689 isLiveOut = true;
690 break;
691 }
692 }
693
694 if (!isLiveOut) {
695 MachineBasicBlock::iterator KillInst = opBlock.end();
696 for (MachineBasicBlock::iterator Term = InsertPos;
697 Term != opBlock.end(); ++Term) {
698 if (Term->readsRegister(SrcReg, /*TRI=*/nullptr))
699 KillInst = Term;
700 }
701
702 if (KillInst == opBlock.end()) {
703 // No terminator uses the register.
704
705 if (reusedIncoming || !IncomingReg) {
706 // We may have to rewind a bit if we didn't just insert a copy.
707 KillInst = InsertPos;
708 while (KillInst != opBlock.begin()) {
709 --KillInst;
710 if (KillInst->isDebugInstr())
711 continue;
712 if (KillInst->readsRegister(SrcReg, /*TRI=*/nullptr))
713 break;
714 }
715 } else {
716 // We just inserted this copy.
717 KillInst = std::prev(InsertPos);
718 }
719 }
720 assert(KillInst->readsRegister(SrcReg, /*TRI=*/nullptr) &&
721 "Cannot find kill instruction");
722
723 SlotIndex LastUseIndex = LIS->getInstructionIndex(*KillInst);
724 SrcLI.removeSegment(LastUseIndex.getRegSlot(),
725 LIS->getMBBEndIdx(&opBlock));
726 for (auto &SR : SrcLI.subranges()) {
727 SR.removeSegment(LastUseIndex.getRegSlot(),
728 LIS->getMBBEndIdx(&opBlock));
729 }
730 }
731 }
732 }
733 }
734
735 // Really delete the PHI instruction now, if it is not in the LoweredPHIs map.
736 if (EliminateNow) {
737 if (LIS)
738 LIS->RemoveMachineInstrFromMaps(*MPhi);
739 MF.deleteMachineInstr(MPhi);
740 }
741}
742
743/// analyzePHINodes - Gather information about the PHI nodes in here. In
744/// particular, we want to map the number of uses of a virtual register which is
745/// used in a PHI node. We map that to the BB the vreg is coming from. This is
746/// used later to determine when the vreg is killed in the BB.
747void PHIEliminationImpl::analyzePHINodes(const MachineFunction &MF) {
748 for (const auto &MBB : MF) {
749 for (const auto &BBI : MBB) {
750 if (!BBI.isPHI())
751 break;
752 for (unsigned i = 1, e = BBI.getNumOperands(); i != e; i += 2) {
753 if (!BBI.getOperand(i).isUndef()) {
754 ++VRegPHIUseCount[BBVRegPair(
755 BBI.getOperand(i + 1).getMBB()->getNumber(),
756 BBI.getOperand(i).getReg())];
757 }
758 }
759 }
760 }
761}
762
763bool PHIEliminationImpl::SplitPHIEdges(
765 std::vector<SparseBitVector<>> *LiveInSets, MachineDomTreeUpdater &MDTU) {
766 if (MBB.empty() || !MBB.front().isPHI() || MBB.isEHPad())
767 return false; // Quick exit for basic blocks without PHIs.
768
769 const MachineLoop *CurLoop = MLI ? MLI->getLoopFor(&MBB) : nullptr;
770 bool IsLoopHeader = CurLoop && &MBB == CurLoop->getHeader();
771
772 bool Changed = false;
773 for (MachineBasicBlock::iterator BBI = MBB.begin(), BBE = MBB.end();
774 BBI != BBE && BBI->isPHI(); ++BBI) {
775 for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) {
776 Register Reg = BBI->getOperand(i).getReg();
777 MachineBasicBlock *PreMBB = BBI->getOperand(i + 1).getMBB();
778 // Is there a critical edge from PreMBB to MBB?
779 if (PreMBB->succ_size() == 1)
780 continue;
781
782 // Avoid splitting backedges of loops. It would introduce small
783 // out-of-line blocks into the loop which is very bad for code placement.
784 if (PreMBB == &MBB && !SplitAllCriticalEdges)
785 continue;
786 const MachineLoop *PreLoop = MLI ? MLI->getLoopFor(PreMBB) : nullptr;
787 if (IsLoopHeader && PreLoop == CurLoop && !SplitAllCriticalEdges)
788 continue;
789
790 // LV doesn't consider a phi use live-out, so isLiveOut only returns true
791 // when the source register is live-out for some other reason than a phi
792 // use. That means the copy we will insert in PreMBB won't be a kill, and
793 // there is a risk it may not be coalesced away.
794 //
795 // If the copy would be a kill, there is no need to split the edge.
796 bool ShouldSplit = isLiveOutPastPHIs(Reg, PreMBB);
797 if (!ShouldSplit && !NoPhiElimLiveOutEarlyExit)
798 continue;
799 if (ShouldSplit) {
800 LLVM_DEBUG(dbgs() << printReg(Reg) << " live-out before critical edge "
801 << printMBBReference(*PreMBB) << " -> "
802 << printMBBReference(MBB) << ": " << *BBI);
803 }
804
805 // If Reg is not live-in to MBB, it means it must be live-in to some
806 // other PreMBB successor, and we can avoid the interference by splitting
807 // the edge.
808 //
809 // If Reg *is* live-in to MBB, the interference is inevitable and a copy
810 // is likely to be left after coalescing. If we are looking at a loop
811 // exiting edge, split it so we won't insert code in the loop, otherwise
812 // don't bother.
813 ShouldSplit = ShouldSplit && !isLiveIn(Reg, &MBB);
814
815 // Check for a loop exiting edge.
816 if (!ShouldSplit && CurLoop != PreLoop) {
817 LLVM_DEBUG({
818 dbgs() << "Split wouldn't help, maybe avoid loop copies?\n";
819 if (PreLoop)
820 dbgs() << "PreLoop: " << *PreLoop;
821 if (CurLoop)
822 dbgs() << "CurLoop: " << *CurLoop;
823 });
824 // This edge could be entering a loop, exiting a loop, or it could be
825 // both: Jumping directly form one loop to the header of a sibling
826 // loop.
827 // Split unless this edge is entering CurLoop from an outer loop.
828 ShouldSplit = PreLoop && !PreLoop->contains(CurLoop);
829 }
830 if (!ShouldSplit && !SplitAllCriticalEdges)
831 continue;
832 if (!(P ? PreMBB->SplitCriticalEdge(&MBB, *P, LiveInSets, &MDTU)
833 : PreMBB->SplitCriticalEdge(&MBB, *MFAM, LiveInSets, &MDTU))) {
834 LLVM_DEBUG(dbgs() << "Failed to split critical edge.\n");
835 continue;
836 }
837 Changed = true;
838 ++NumCriticalEdgesSplit;
839 }
840 }
841 return Changed;
842}
843
844bool PHIEliminationImpl::isLiveIn(Register Reg, const MachineBasicBlock *MBB) {
845 assert((LV || LIS) &&
846 "isLiveIn() requires either LiveVariables or LiveIntervals");
847 if (LIS)
848 return LIS->isLiveInToMBB(LIS->getInterval(Reg), MBB);
849 else
850 return LV->isLiveIn(Reg, *MBB);
851}
852
853bool PHIEliminationImpl::isLiveOutPastPHIs(Register Reg,
854 const MachineBasicBlock *MBB) {
855 assert((LV || LIS) &&
856 "isLiveOutPastPHIs() requires either LiveVariables or LiveIntervals");
857 // LiveVariables considers uses in PHIs to be in the predecessor basic block,
858 // so that a register used only in a PHI is not live out of the block. In
859 // contrast, LiveIntervals considers uses in PHIs to be on the edge rather
860 // than in the predecessor basic block, so that a register used only in a PHI
861 // is live out of the block.
862 if (LIS) {
863 const LiveInterval &LI = LIS->getInterval(Reg);
864 for (const MachineBasicBlock *SI : MBB->successors())
865 if (LI.liveAt(LIS->getMBBStartIdx(SI)))
866 return true;
867 return false;
868 } else {
869 return LV->isLiveOut(Reg, *MBB);
870 }
871}
unsigned const MachineRegisterInfo * MRI
MachineInstrBuilder MachineInstrBuilder & DefMI
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
MachineBasicBlock & MBB
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
This file defines the DenseMap class.
#define DEBUG_TYPE
const HexagonInstrInfo * TII
IRTranslator LLVM IR MI
#define I(x, y, z)
Definition MD5.cpp:58
Register Reg
#define P(N)
static bool allPhiOperandsUndefined(const MachineInstr &MPhi, const MachineRegisterInfo &MRI)
Return true if all sources of the phi node are implicit_def's, or undef's.
static cl::opt< bool > NoPhiElimLiveOutEarlyExit("no-phi-elim-live-out-early-exit", cl::init(false), cl::Hidden, cl::desc("Do not use an early exit if isLiveOutPastPHIs returns true."))
static bool isImplicitlyDefined(Register VirtReg, const MachineRegisterInfo &MRI)
Return true if all defs of VirtReg are implicit-defs.
static cl::opt< bool > DisableEdgeSplitting("disable-phi-elim-edge-splitting", cl::init(false), cl::Hidden, cl::desc("Disable critical edge splitting " "during PHI elimination"))
static cl::opt< bool > SplitAllCriticalEdges("phi-elim-split-all-critical-edges", cl::init(false), cl::Hidden, cl::desc("Split all critical edges during " "PHI elimination"))
#define INITIALIZE_PASS_DEPENDENCY(depName)
Definition PassSupport.h:42
#define INITIALIZE_PASS_END(passName, arg, name, cfg, analysis)
Definition PassSupport.h:44
#define INITIALIZE_PASS_BEGIN(passName, arg, name, cfg, analysis)
Definition PassSupport.h:39
static bool isLiveOut(const MachineBasicBlock &MBB, unsigned Reg)
bool isDead(const MachineInstr &MI, const MachineRegisterInfo &MRI)
This file defines the SmallPtrSet class.
This file defines the 'Statistic' class, which is designed to be an easy way to expose various metric...
#define STATISTIC(VARNAME, DESC)
Definition Statistic.h:167
#define LLVM_DEBUG(...)
Definition Debug.h:114
Represent the analysis usage information of a pass.
LiveInterval - This class represents the liveness of a register, or stack slot.
iterator_range< subrange_iterator > subranges()
SlotIndex getMBBStartIdx(const MachineBasicBlock *mbb) const
Return the first index in the given basic block.
SlotIndex InsertMachineInstrInMaps(MachineInstr &MI)
LiveInterval & getOrCreateEmptyInterval(Register Reg)
Return an existing interval for Reg.
SlotIndex getInstructionIndex(const MachineInstr &Instr) const
Returns the base index of the given instruction.
void RemoveMachineInstrFromMaps(MachineInstr &MI)
VNInfo::Allocator & getVNInfoAllocator()
SlotIndex getMBBEndIdx(const MachineBasicBlock *mbb) const
Return the last index in the given basic block.
LiveInterval & getInterval(Register Reg)
LLVM_ABI LiveInterval::Segment addSegmentToEndOfBlock(Register Reg, MachineInstr &startInst)
Given a register and an instruction, adds a live segment from that instruction to the end of its MBB.
bool isLiveInToMBB(const LiveRange &LR, const MachineBasicBlock *mbb) const
LLVM_ABI iterator addSegment(Segment S)
Add the specified Segment to this range, merging segments as appropriate.
bool liveAt(SlotIndex index) const
bool empty() const
VNInfo * getNextValue(SlotIndex Def, VNInfo::Allocator &VNInfoAllocator)
getNextValue - Create a new value number and return it.
LLVM_ABI void removeSegment(SlotIndex Start, SlotIndex End, bool RemoveDeadValNo=false)
Remove the specified interval from this live range.
VNInfo * getVNInfoAt(SlotIndex Idx) const
getVNInfoAt - Return the VNInfo that is live at Idx, or NULL.
bool removeVirtualRegisterDead(Register Reg, MachineInstr &MI)
removeVirtualRegisterDead - Remove the specified kill of the virtual register from the live variable ...
bool removeVirtualRegisterKilled(Register Reg, MachineInstr &MI)
removeVirtualRegisterKilled - Remove the specified kill of the virtual register from the live variabl...
LLVM_ABI void removeVirtualRegistersKilled(MachineInstr &MI)
removeVirtualRegistersKilled - Remove all killed info for the specified instruction.
void addVirtualRegisterDead(Register IncomingReg, MachineInstr &MI, bool AddIfNotFound=false)
addVirtualRegisterDead - Add information about the fact that the specified register is dead after bei...
LLVM_ABI bool isLiveOut(Register Reg, const MachineBasicBlock &MBB)
isLiveOut - Determine if Reg is live out from MBB, when not considering PHI nodes.
bool isLiveIn(Register Reg, const MachineBasicBlock &MBB)
void addVirtualRegisterKilled(Register IncomingReg, MachineInstr &MI, bool AddIfNotFound=false)
addVirtualRegisterKilled - Add information about the fact that the specified register is killed after...
LLVM_ABI VarInfo & getVarInfo(Register Reg)
getVarInfo - Return the VarInfo structure for the specified VIRTUAL register.
bool contains(const LoopT *L) const
Return true if the specified loop is contained within in this loop.
BlockT * getHeader() const
LoopT * getLoopFor(const BlockT *BB) const
Return the inner most loop that BB lives in.
bool isEHPad() const
Returns true if the block is a landing pad.
MachineBasicBlock * SplitCriticalEdge(MachineBasicBlock *Succ, Pass &P, std::vector< SparseBitVector<> > *LiveInSets=nullptr, MachineDomTreeUpdater *MDTU=nullptr)
int getNumber() const
MachineBasicBlocks are uniquely numbered at the function level, unless they're not in a MachineFuncti...
LLVM_ABI iterator SkipPHIsAndLabels(iterator I)
Return the first instruction in MBB after I that is not a PHI or a label.
MachineInstr * remove(MachineInstr *I)
Remove the unbundled instruction from the instruction list without deleting it.
LLVM_ABI void dump() const
const MachineFunction * getParent() const
Return the MachineFunction containing this basic block.
iterator_range< succ_iterator > successors()
iterator_range< pred_iterator > predecessors()
MachineInstrBundleIterator< MachineInstr > iterator
Analysis pass which computes a MachineDominatorTree.
Analysis pass which computes a MachineDominatorTree.
DominatorTree Class - Concrete subclass of DominatorTreeBase that is used to compute a normal dominat...
MachineFunctionPass - This class adapts the FunctionPass interface to allow convenient creation of pa...
void getAnalysisUsage(AnalysisUsage &AU) const override
getAnalysisUsage - Subclasses that override getAnalysisUsage must call this.
Location of a PHI instruction that is also a debug-info variable value, for the duration of register ...
const TargetSubtargetInfo & getSubtarget() const
getSubtarget - Return the subtarget for which this machine code is being compiled.
unsigned size() const
MachineRegisterInfo & getRegInfo()
getRegInfo - Return information about the registers currently in use.
DenseMap< unsigned, DebugPHIRegallocPos > DebugPHIPositions
Map of debug instruction numbers to the position of their PHI instructions during register allocation...
Representation of each machine instruction.
bool isImplicitDef() const
const MachineBasicBlock * getParent() const
unsigned getNumOperands() const
Retuns the total number of operands.
unsigned peekDebugInstrNum() const
Examine the instruction number of this MachineInstr.
const DebugLoc & getDebugLoc() const
Returns the debug location id of this MachineInstr.
LLVM_ABI void eraseFromParent()
Unlink 'this' from the containing basic block and delete it.
const MachineOperand & getOperand(unsigned i) const
Analysis pass that exposes the MachineLoopInfo for a machine function.
MachineOperand class - Representation of each machine instruction operand.
unsigned getSubReg() const
bool isReg() const
isReg - Tests if this is a MO_Register operand.
MachineBasicBlock * getMBB() const
LLVM_ABI void setReg(Register Reg)
Change the register this operand corresponds to.
Register getReg() const
getReg - Returns the register number.
MachinePostDominatorTree - an analysis pass wrapper for DominatorTree used to compute the post-domina...
MachineRegisterInfo - Keep track of information for virtual and physical registers,...
const TargetRegisterClass * getRegClass(Register Reg) const
Return the register class of the specified virtual register.
LLVM_ABI Register createVirtualRegister(const TargetRegisterClass *RegClass, StringRef Name="")
createVirtualRegister - Create and return a new virtual register in the function with the specified r...
PreservedAnalyses run(MachineFunction &MF, MachineFunctionAnalysisManager &MFAM)
static LLVM_ABI PassRegistry * getPassRegistry()
getPassRegistry - Access the global registry object, which is automatically initialized at applicatio...
A set of analyses that are preserved following a run of a transformation pass.
Definition Analysis.h:112
static PreservedAnalyses all()
Construct a special preserved set that preserves all passes.
Definition Analysis.h:118
Wrapper class representing virtual and physical registers.
Definition Register.h:19
static Register index2VirtReg(unsigned Index)
Convert a 0-based index to a virtual register number.
Definition Register.h:67
constexpr bool isVirtual() const
Return true if the specified register number is in the virtual register namespace.
Definition Register.h:74
SlotIndex - An opaque wrapper around machine indexes.
Definition SlotIndexes.h:66
SlotIndex getRegSlot(bool EC=false) const
Returns the register use/def slot in the current instruction for a normal or early-clobber def.
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
void reset(unsigned Idx)
SparseBitVectorIterator iterator
TargetInstrInfo - Interface to description of machine instruction set.
virtual const TargetInstrInfo * getInstrInfo() const
VNInfo - Value Number Information.
SlotIndex def
The index of the defining instruction.
Changed
@ Entry
Definition COFF.h:862
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
Definition CallingConv.h:24
initializer< Ty > init(const Ty &Val)
PointerTypeMap run(const Module &M)
Compute the PointerTypeMap for the module M.
This is an optimization pass for GlobalISel generic memory operations.
MachineInstrBuilder BuildMI(MachineFunction &MF, const MIMetadata &MIMD, const MCInstrDesc &MCID)
Builder interface. Specify how to create the initial instruction itself.
AnalysisManager< MachineFunction > MachineFunctionAnalysisManager
LLVM_ABI PreservedAnalyses getMachineFunctionPassPreservedAnalyses()
Returns the minimum set of Analyses that all machine function passes must preserve.
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition Debug.cpp:207
MachineBasicBlock::iterator findPHICopyInsertPoint(MachineBasicBlock *MBB, MachineBasicBlock *SuccMBB, Register SrcReg)
findPHICopyInsertPoint - Find a safe place in MBB to insert a copy from SrcReg when following the CFG...
LLVM_ABI unsigned SplitAllCriticalEdges(Function &F, const CriticalEdgeSplittingOptions &Options=CriticalEdgeSplittingOptions())
Loop over all of the edges in the CFG, breaking critical edges as they are found.
LLVM_ABI void initializePHIEliminationPass(PassRegistry &)
LLVM_ABI char & PHIEliminationID
PHIElimination - This pass eliminates machine instruction PHI nodes by inserting copy instructions.
LLVM_ABI Printable printReg(Register Reg, const TargetRegisterInfo *TRI=nullptr, unsigned SubIdx=0, const MachineRegisterInfo *MRI=nullptr)
Prints virtual and physical registers with or without a TRI instance.
LLVM_ABI Printable printMBBReference(const MachineBasicBlock &MBB)
Prints a machine basic block reference.
This represents a simple continuous liveness interval for a value.
VarInfo - This represents the regions where a virtual register is live in the program.
SparseBitVector AliveBlocks
AliveBlocks - Set of blocks in which this value is alive completely through.