LLVM 22.0.0git
RISCVLegalizerInfo.cpp
Go to the documentation of this file.
1//===-- RISCVLegalizerInfo.cpp ----------------------------------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8/// \file
9/// This file implements the targeting of the Machinelegalizer class for RISC-V.
10/// \todo This should be generated by TableGen.
11//===----------------------------------------------------------------------===//
12
13#include "RISCVLegalizerInfo.h"
16#include "RISCVSubtarget.h"
29#include "llvm/IR/Intrinsics.h"
30#include "llvm/IR/IntrinsicsRISCV.h"
31#include "llvm/IR/Type.h"
32
33using namespace llvm;
34using namespace LegalityPredicates;
35using namespace LegalizeMutations;
36
38typeIsLegalIntOrFPVec(unsigned TypeIdx,
39 std::initializer_list<LLT> IntOrFPVecTys,
40 const RISCVSubtarget &ST) {
41 LegalityPredicate P = [=, &ST](const LegalityQuery &Query) {
42 return ST.hasVInstructions() &&
43 (Query.Types[TypeIdx].getScalarSizeInBits() != 64 ||
44 ST.hasVInstructionsI64()) &&
45 (Query.Types[TypeIdx].getElementCount().getKnownMinValue() != 1 ||
46 ST.getELen() == 64);
47 };
48
49 return all(typeInSet(TypeIdx, IntOrFPVecTys), P);
50}
51
53typeIsLegalBoolVec(unsigned TypeIdx, std::initializer_list<LLT> BoolVecTys,
54 const RISCVSubtarget &ST) {
55 LegalityPredicate P = [=, &ST](const LegalityQuery &Query) {
56 return ST.hasVInstructions() &&
57 (Query.Types[TypeIdx].getElementCount().getKnownMinValue() != 1 ||
58 ST.getELen() == 64);
59 };
60 return all(typeInSet(TypeIdx, BoolVecTys), P);
61}
62
63static LegalityPredicate typeIsLegalPtrVec(unsigned TypeIdx,
64 std::initializer_list<LLT> PtrVecTys,
65 const RISCVSubtarget &ST) {
66 LegalityPredicate P = [=, &ST](const LegalityQuery &Query) {
67 return ST.hasVInstructions() &&
68 (Query.Types[TypeIdx].getElementCount().getKnownMinValue() != 1 ||
69 ST.getELen() == 64) &&
70 (Query.Types[TypeIdx].getElementCount().getKnownMinValue() != 16 ||
71 Query.Types[TypeIdx].getScalarSizeInBits() == 32);
72 };
73 return all(typeInSet(TypeIdx, PtrVecTys), P);
74}
75
77 : STI(ST), XLen(STI.getXLen()), sXLen(LLT::scalar(XLen)) {
78 const LLT sDoubleXLen = LLT::scalar(2 * XLen);
79 const LLT p0 = LLT::pointer(0, XLen);
80 const LLT s1 = LLT::scalar(1);
81 const LLT s8 = LLT::scalar(8);
82 const LLT s16 = LLT::scalar(16);
83 const LLT s32 = LLT::scalar(32);
84 const LLT s64 = LLT::scalar(64);
85 const LLT s128 = LLT::scalar(128);
86
87 const LLT nxv1s1 = LLT::scalable_vector(1, s1);
88 const LLT nxv2s1 = LLT::scalable_vector(2, s1);
89 const LLT nxv4s1 = LLT::scalable_vector(4, s1);
90 const LLT nxv8s1 = LLT::scalable_vector(8, s1);
91 const LLT nxv16s1 = LLT::scalable_vector(16, s1);
92 const LLT nxv32s1 = LLT::scalable_vector(32, s1);
93 const LLT nxv64s1 = LLT::scalable_vector(64, s1);
94
95 const LLT nxv1s8 = LLT::scalable_vector(1, s8);
96 const LLT nxv2s8 = LLT::scalable_vector(2, s8);
97 const LLT nxv4s8 = LLT::scalable_vector(4, s8);
98 const LLT nxv8s8 = LLT::scalable_vector(8, s8);
99 const LLT nxv16s8 = LLT::scalable_vector(16, s8);
100 const LLT nxv32s8 = LLT::scalable_vector(32, s8);
101 const LLT nxv64s8 = LLT::scalable_vector(64, s8);
102
103 const LLT nxv1s16 = LLT::scalable_vector(1, s16);
104 const LLT nxv2s16 = LLT::scalable_vector(2, s16);
105 const LLT nxv4s16 = LLT::scalable_vector(4, s16);
106 const LLT nxv8s16 = LLT::scalable_vector(8, s16);
107 const LLT nxv16s16 = LLT::scalable_vector(16, s16);
108 const LLT nxv32s16 = LLT::scalable_vector(32, s16);
109
110 const LLT nxv1s32 = LLT::scalable_vector(1, s32);
111 const LLT nxv2s32 = LLT::scalable_vector(2, s32);
112 const LLT nxv4s32 = LLT::scalable_vector(4, s32);
113 const LLT nxv8s32 = LLT::scalable_vector(8, s32);
114 const LLT nxv16s32 = LLT::scalable_vector(16, s32);
115
116 const LLT nxv1s64 = LLT::scalable_vector(1, s64);
117 const LLT nxv2s64 = LLT::scalable_vector(2, s64);
118 const LLT nxv4s64 = LLT::scalable_vector(4, s64);
119 const LLT nxv8s64 = LLT::scalable_vector(8, s64);
120
121 const LLT nxv1p0 = LLT::scalable_vector(1, p0);
122 const LLT nxv2p0 = LLT::scalable_vector(2, p0);
123 const LLT nxv4p0 = LLT::scalable_vector(4, p0);
124 const LLT nxv8p0 = LLT::scalable_vector(8, p0);
125 const LLT nxv16p0 = LLT::scalable_vector(16, p0);
126
127 using namespace TargetOpcode;
128
129 auto BoolVecTys = {nxv1s1, nxv2s1, nxv4s1, nxv8s1, nxv16s1, nxv32s1, nxv64s1};
130
131 auto IntOrFPVecTys = {nxv1s8, nxv2s8, nxv4s8, nxv8s8, nxv16s8, nxv32s8,
132 nxv64s8, nxv1s16, nxv2s16, nxv4s16, nxv8s16, nxv16s16,
133 nxv32s16, nxv1s32, nxv2s32, nxv4s32, nxv8s32, nxv16s32,
134 nxv1s64, nxv2s64, nxv4s64, nxv8s64};
135
136 auto PtrVecTys = {nxv1p0, nxv2p0, nxv4p0, nxv8p0, nxv16p0};
137
138 getActionDefinitionsBuilder({G_ADD, G_SUB})
139 .legalFor({sXLen})
140 .legalIf(typeIsLegalIntOrFPVec(0, IntOrFPVecTys, ST))
141 .customFor(ST.is64Bit(), {s32})
143 .clampScalar(0, sXLen, sXLen);
144
145 getActionDefinitionsBuilder({G_AND, G_OR, G_XOR})
146 .legalFor({sXLen})
147 .legalIf(typeIsLegalIntOrFPVec(0, IntOrFPVecTys, ST))
149 .clampScalar(0, sXLen, sXLen);
150
152 {G_UADDE, G_UADDO, G_USUBE, G_USUBO}).lower();
153
154 getActionDefinitionsBuilder({G_SADDO, G_SADDE, G_SSUBO})
155 .minScalar(0, sXLen)
156 .lower();
157
158 // TODO: Use Vector Single-Width Saturating Instructions for vector types.
160 {G_UADDSAT, G_SADDSAT, G_USUBSAT, G_SSUBSAT, G_SSHLSAT, G_USHLSAT})
161 .lower();
162
163 getActionDefinitionsBuilder({G_SHL, G_ASHR, G_LSHR})
164 .legalFor({{sXLen, sXLen}})
165 .customFor(ST.is64Bit(), {{s32, s32}})
166 .widenScalarToNextPow2(0)
167 .clampScalar(1, sXLen, sXLen)
168 .clampScalar(0, sXLen, sXLen);
169
170 getActionDefinitionsBuilder({G_ZEXT, G_SEXT, G_ANYEXT})
171 .legalFor({{s32, s16}})
172 .legalFor(ST.is64Bit(), {{s64, s16}, {s64, s32}})
173 .legalIf(all(typeIsLegalIntOrFPVec(0, IntOrFPVecTys, ST),
174 typeIsLegalIntOrFPVec(1, IntOrFPVecTys, ST)))
175 .customIf(typeIsLegalBoolVec(1, BoolVecTys, ST))
176 .maxScalar(0, sXLen);
177
178 getActionDefinitionsBuilder(G_SEXT_INREG)
179 .customFor({sXLen})
180 .clampScalar(0, sXLen, sXLen)
181 .lower();
182
183 // Merge/Unmerge
184 for (unsigned Op : {G_MERGE_VALUES, G_UNMERGE_VALUES}) {
185 auto &MergeUnmergeActions = getActionDefinitionsBuilder(Op);
186 unsigned BigTyIdx = Op == G_MERGE_VALUES ? 0 : 1;
187 unsigned LitTyIdx = Op == G_MERGE_VALUES ? 1 : 0;
188 if (XLen == 32 && ST.hasStdExtD()) {
189 MergeUnmergeActions.legalIf(
190 all(typeIs(BigTyIdx, s64), typeIs(LitTyIdx, s32)));
191 }
192 MergeUnmergeActions.widenScalarToNextPow2(LitTyIdx, XLen)
193 .widenScalarToNextPow2(BigTyIdx, XLen)
194 .clampScalar(LitTyIdx, sXLen, sXLen)
195 .clampScalar(BigTyIdx, sXLen, sXLen);
196 }
197
198 getActionDefinitionsBuilder({G_FSHL, G_FSHR}).lower();
199
200 getActionDefinitionsBuilder({G_ROTR, G_ROTL})
201 .legalFor(ST.hasStdExtZbb() || ST.hasStdExtZbkb(), {{sXLen, sXLen}})
202 .customFor(ST.is64Bit() && (ST.hasStdExtZbb() || ST.hasStdExtZbkb()),
203 {{s32, s32}})
204 .lower();
205
206 getActionDefinitionsBuilder(G_BITREVERSE).maxScalar(0, sXLen).lower();
207
208 getActionDefinitionsBuilder(G_BITCAST).legalIf(
210 typeIsLegalBoolVec(0, BoolVecTys, ST)),
212 typeIsLegalBoolVec(1, BoolVecTys, ST))));
213
214 auto &BSWAPActions = getActionDefinitionsBuilder(G_BSWAP);
215 if (ST.hasStdExtZbb() || ST.hasStdExtZbkb())
216 BSWAPActions.legalFor({sXLen}).clampScalar(0, sXLen, sXLen);
217 else
218 BSWAPActions.maxScalar(0, sXLen).lower();
219
220 auto &CountZerosActions = getActionDefinitionsBuilder({G_CTLZ, G_CTTZ});
221 auto &CountZerosUndefActions =
222 getActionDefinitionsBuilder({G_CTLZ_ZERO_UNDEF, G_CTTZ_ZERO_UNDEF});
223 if (ST.hasStdExtZbb()) {
224 CountZerosActions.legalFor({{sXLen, sXLen}})
225 .customFor({{s32, s32}})
226 .clampScalar(0, s32, sXLen)
227 .widenScalarToNextPow2(0)
228 .scalarSameSizeAs(1, 0);
229 } else {
230 CountZerosActions.maxScalar(0, sXLen).scalarSameSizeAs(1, 0).lower();
231 CountZerosUndefActions.maxScalar(0, sXLen).scalarSameSizeAs(1, 0);
232 }
233 CountZerosUndefActions.lower();
234
235 auto &CTPOPActions = getActionDefinitionsBuilder(G_CTPOP);
236 if (ST.hasStdExtZbb()) {
237 CTPOPActions.legalFor({{sXLen, sXLen}})
238 .clampScalar(0, sXLen, sXLen)
239 .scalarSameSizeAs(1, 0);
240 } else {
241 CTPOPActions.maxScalar(0, sXLen).scalarSameSizeAs(1, 0).lower();
242 }
243
244 getActionDefinitionsBuilder(G_CONSTANT)
245 .legalFor({p0})
246 .legalFor(!ST.is64Bit(), {s32})
247 .customFor(ST.is64Bit(), {s64})
248 .widenScalarToNextPow2(0)
249 .clampScalar(0, sXLen, sXLen);
250
251 // TODO: transform illegal vector types into legal vector type
252 getActionDefinitionsBuilder(G_FREEZE)
253 .legalFor({s16, s32, p0})
254 .legalFor(ST.is64Bit(), {s64})
255 .legalIf(typeIsLegalBoolVec(0, BoolVecTys, ST))
256 .legalIf(typeIsLegalIntOrFPVec(0, IntOrFPVecTys, ST))
257 .widenScalarToNextPow2(0)
258 .clampScalar(0, s16, sXLen);
259
260 // TODO: transform illegal vector types into legal vector type
261 // TODO: Merge with G_FREEZE?
262 getActionDefinitionsBuilder(
263 {G_IMPLICIT_DEF, G_CONSTANT_FOLD_BARRIER})
264 .legalFor({s32, sXLen, p0})
265 .legalIf(typeIsLegalBoolVec(0, BoolVecTys, ST))
266 .legalIf(typeIsLegalIntOrFPVec(0, IntOrFPVecTys, ST))
267 .widenScalarToNextPow2(0)
268 .clampScalar(0, s32, sXLen);
269
270 getActionDefinitionsBuilder(G_ICMP)
271 .legalFor({{sXLen, sXLen}, {sXLen, p0}})
272 .legalIf(all(typeIsLegalBoolVec(0, BoolVecTys, ST),
273 typeIsLegalIntOrFPVec(1, IntOrFPVecTys, ST)))
274 .widenScalarOrEltToNextPow2OrMinSize(1, 8)
275 .clampScalar(1, sXLen, sXLen)
276 .clampScalar(0, sXLen, sXLen);
277
278 getActionDefinitionsBuilder(G_SELECT)
279 .legalFor({{s32, sXLen}, {p0, sXLen}})
280 .legalIf(all(typeIsLegalIntOrFPVec(0, IntOrFPVecTys, ST),
281 typeIsLegalBoolVec(1, BoolVecTys, ST)))
282 .legalFor(XLen == 64 || ST.hasStdExtD(), {{s64, sXLen}})
283 .widenScalarToNextPow2(0)
284 .clampScalar(0, s32, (XLen == 64 || ST.hasStdExtD()) ? s64 : s32)
285 .clampScalar(1, sXLen, sXLen);
286
287 auto &LoadActions = getActionDefinitionsBuilder(G_LOAD);
288 auto &StoreActions = getActionDefinitionsBuilder(G_STORE);
289 auto &ExtLoadActions = getActionDefinitionsBuilder({G_SEXTLOAD, G_ZEXTLOAD});
290
291 // Return the alignment needed for scalar memory ops. If unaligned scalar mem
292 // is supported, we only require byte alignment. Otherwise, we need the memory
293 // op to be natively aligned.
294 auto getScalarMemAlign = [&ST](unsigned Size) {
295 return ST.enableUnalignedScalarMem() ? 8 : Size;
296 };
297
298 LoadActions.legalForTypesWithMemDesc(
299 {{s16, p0, s8, getScalarMemAlign(8)},
300 {s32, p0, s8, getScalarMemAlign(8)},
301 {s16, p0, s16, getScalarMemAlign(16)},
302 {s32, p0, s16, getScalarMemAlign(16)},
303 {s32, p0, s32, getScalarMemAlign(32)},
304 {p0, p0, sXLen, getScalarMemAlign(XLen)}});
305 StoreActions.legalForTypesWithMemDesc(
306 {{s16, p0, s8, getScalarMemAlign(8)},
307 {s32, p0, s8, getScalarMemAlign(8)},
308 {s16, p0, s16, getScalarMemAlign(16)},
309 {s32, p0, s16, getScalarMemAlign(16)},
310 {s32, p0, s32, getScalarMemAlign(32)},
311 {p0, p0, sXLen, getScalarMemAlign(XLen)}});
312 ExtLoadActions.legalForTypesWithMemDesc(
313 {{sXLen, p0, s8, getScalarMemAlign(8)},
314 {sXLen, p0, s16, getScalarMemAlign(16)}});
315 if (XLen == 64) {
316 LoadActions.legalForTypesWithMemDesc(
317 {{s64, p0, s8, getScalarMemAlign(8)},
318 {s64, p0, s16, getScalarMemAlign(16)},
319 {s64, p0, s32, getScalarMemAlign(32)},
320 {s64, p0, s64, getScalarMemAlign(64)}});
321 StoreActions.legalForTypesWithMemDesc(
322 {{s64, p0, s8, getScalarMemAlign(8)},
323 {s64, p0, s16, getScalarMemAlign(16)},
324 {s64, p0, s32, getScalarMemAlign(32)},
325 {s64, p0, s64, getScalarMemAlign(64)}});
326 ExtLoadActions.legalForTypesWithMemDesc(
327 {{s64, p0, s32, getScalarMemAlign(32)}});
328 } else if (ST.hasStdExtD()) {
329 LoadActions.legalForTypesWithMemDesc(
330 {{s64, p0, s64, getScalarMemAlign(64)}});
331 StoreActions.legalForTypesWithMemDesc(
332 {{s64, p0, s64, getScalarMemAlign(64)}});
333 }
334
335 // Vector loads/stores.
336 if (ST.hasVInstructions()) {
337 LoadActions.legalForTypesWithMemDesc({{nxv2s8, p0, nxv2s8, 8},
338 {nxv4s8, p0, nxv4s8, 8},
339 {nxv8s8, p0, nxv8s8, 8},
340 {nxv16s8, p0, nxv16s8, 8},
341 {nxv32s8, p0, nxv32s8, 8},
342 {nxv64s8, p0, nxv64s8, 8},
343 {nxv2s16, p0, nxv2s16, 16},
344 {nxv4s16, p0, nxv4s16, 16},
345 {nxv8s16, p0, nxv8s16, 16},
346 {nxv16s16, p0, nxv16s16, 16},
347 {nxv32s16, p0, nxv32s16, 16},
348 {nxv2s32, p0, nxv2s32, 32},
349 {nxv4s32, p0, nxv4s32, 32},
350 {nxv8s32, p0, nxv8s32, 32},
351 {nxv16s32, p0, nxv16s32, 32}});
352 StoreActions.legalForTypesWithMemDesc({{nxv2s8, p0, nxv2s8, 8},
353 {nxv4s8, p0, nxv4s8, 8},
354 {nxv8s8, p0, nxv8s8, 8},
355 {nxv16s8, p0, nxv16s8, 8},
356 {nxv32s8, p0, nxv32s8, 8},
357 {nxv64s8, p0, nxv64s8, 8},
358 {nxv2s16, p0, nxv2s16, 16},
359 {nxv4s16, p0, nxv4s16, 16},
360 {nxv8s16, p0, nxv8s16, 16},
361 {nxv16s16, p0, nxv16s16, 16},
362 {nxv32s16, p0, nxv32s16, 16},
363 {nxv2s32, p0, nxv2s32, 32},
364 {nxv4s32, p0, nxv4s32, 32},
365 {nxv8s32, p0, nxv8s32, 32},
366 {nxv16s32, p0, nxv16s32, 32}});
367
368 if (ST.getELen() == 64) {
369 LoadActions.legalForTypesWithMemDesc({{nxv1s8, p0, nxv1s8, 8},
370 {nxv1s16, p0, nxv1s16, 16},
371 {nxv1s32, p0, nxv1s32, 32}});
372 StoreActions.legalForTypesWithMemDesc({{nxv1s8, p0, nxv1s8, 8},
373 {nxv1s16, p0, nxv1s16, 16},
374 {nxv1s32, p0, nxv1s32, 32}});
375 }
376
377 if (ST.hasVInstructionsI64()) {
378 LoadActions.legalForTypesWithMemDesc({{nxv1s64, p0, nxv1s64, 64},
379 {nxv2s64, p0, nxv2s64, 64},
380 {nxv4s64, p0, nxv4s64, 64},
381 {nxv8s64, p0, nxv8s64, 64}});
382 StoreActions.legalForTypesWithMemDesc({{nxv1s64, p0, nxv1s64, 64},
383 {nxv2s64, p0, nxv2s64, 64},
384 {nxv4s64, p0, nxv4s64, 64},
385 {nxv8s64, p0, nxv8s64, 64}});
386 }
387
388 // we will take the custom lowering logic if we have scalable vector types
389 // with non-standard alignments
390 LoadActions.customIf(typeIsLegalIntOrFPVec(0, IntOrFPVecTys, ST));
391 StoreActions.customIf(typeIsLegalIntOrFPVec(0, IntOrFPVecTys, ST));
392
393 // Pointers require that XLen sized elements are legal.
394 if (XLen <= ST.getELen()) {
395 LoadActions.customIf(typeIsLegalPtrVec(0, PtrVecTys, ST));
396 StoreActions.customIf(typeIsLegalPtrVec(0, PtrVecTys, ST));
397 }
398 }
399
400 LoadActions.widenScalarToNextPow2(0, /* MinSize = */ 8)
401 .lowerIfMemSizeNotByteSizePow2()
402 .clampScalar(0, s16, sXLen)
403 .lower();
404 StoreActions
405 .clampScalar(0, s16, sXLen)
406 .lowerIfMemSizeNotByteSizePow2()
407 .lower();
408
409 ExtLoadActions.widenScalarToNextPow2(0).clampScalar(0, sXLen, sXLen).lower();
410
411 getActionDefinitionsBuilder({G_PTR_ADD, G_PTRMASK}).legalFor({{p0, sXLen}});
412
413 getActionDefinitionsBuilder(G_PTRTOINT)
414 .legalFor({{sXLen, p0}})
415 .clampScalar(0, sXLen, sXLen);
416
417 getActionDefinitionsBuilder(G_INTTOPTR)
418 .legalFor({{p0, sXLen}})
419 .clampScalar(1, sXLen, sXLen);
420
421 getActionDefinitionsBuilder(G_BRCOND).legalFor({sXLen}).minScalar(0, sXLen);
422
423 getActionDefinitionsBuilder(G_BRJT).customFor({{p0, sXLen}});
424
425 getActionDefinitionsBuilder(G_BRINDIRECT).legalFor({p0});
426
427 getActionDefinitionsBuilder(G_PHI)
428 .legalFor({p0, s32, sXLen})
429 .widenScalarToNextPow2(0)
430 .clampScalar(0, s32, sXLen);
431
432 getActionDefinitionsBuilder({G_GLOBAL_VALUE, G_JUMP_TABLE, G_CONSTANT_POOL})
433 .legalFor({p0});
434
435 if (ST.hasStdExtZmmul()) {
436 getActionDefinitionsBuilder(G_MUL)
437 .legalFor({sXLen})
438 .widenScalarToNextPow2(0)
439 .clampScalar(0, sXLen, sXLen);
440
441 // clang-format off
442 getActionDefinitionsBuilder({G_SMULH, G_UMULH})
443 .legalFor({sXLen})
444 .lower();
445 // clang-format on
446
447 getActionDefinitionsBuilder({G_SMULO, G_UMULO}).minScalar(0, sXLen).lower();
448 } else {
449 getActionDefinitionsBuilder(G_MUL)
450 .libcallFor({sXLen, sDoubleXLen})
451 .widenScalarToNextPow2(0)
452 .clampScalar(0, sXLen, sDoubleXLen);
453
454 getActionDefinitionsBuilder({G_SMULH, G_UMULH}).lowerFor({sXLen});
455
456 getActionDefinitionsBuilder({G_SMULO, G_UMULO})
457 .minScalar(0, sXLen)
458 // Widen sXLen to sDoubleXLen so we can use a single libcall to get
459 // the low bits for the mul result and high bits to do the overflow
460 // check.
461 .widenScalarIf(typeIs(0, sXLen),
462 LegalizeMutations::changeTo(0, sDoubleXLen))
463 .lower();
464 }
465
466 if (ST.hasStdExtM()) {
467 getActionDefinitionsBuilder({G_SDIV, G_UDIV, G_UREM})
468 .legalFor({sXLen})
469 .customFor({s32})
470 .libcallFor({sDoubleXLen})
471 .clampScalar(0, s32, sDoubleXLen)
472 .widenScalarToNextPow2(0);
473 getActionDefinitionsBuilder(G_SREM)
474 .legalFor({sXLen})
475 .libcallFor({sDoubleXLen})
476 .clampScalar(0, sXLen, sDoubleXLen)
477 .widenScalarToNextPow2(0);
478 } else {
479 getActionDefinitionsBuilder({G_UDIV, G_SDIV, G_UREM, G_SREM})
480 .libcallFor({sXLen, sDoubleXLen})
481 .clampScalar(0, sXLen, sDoubleXLen)
482 .widenScalarToNextPow2(0);
483 }
484
485 // TODO: Use libcall for sDoubleXLen.
486 getActionDefinitionsBuilder({G_SDIVREM, G_UDIVREM}).lower();
487
488 getActionDefinitionsBuilder(G_ABS)
489 .customFor(ST.hasStdExtZbb(), {sXLen})
490 .minScalar(ST.hasStdExtZbb(), 0, sXLen)
491 .lower();
492
493 getActionDefinitionsBuilder({G_ABDS, G_ABDU})
494 .minScalar(ST.hasStdExtZbb(), 0, sXLen)
495 .lower();
496
497 getActionDefinitionsBuilder({G_UMAX, G_UMIN, G_SMAX, G_SMIN})
498 .legalFor(ST.hasStdExtZbb(), {sXLen})
499 .minScalar(ST.hasStdExtZbb(), 0, sXLen)
500 .lower();
501
502 getActionDefinitionsBuilder({G_SCMP, G_UCMP}).lower();
503
504 getActionDefinitionsBuilder(G_FRAME_INDEX).legalFor({p0});
505
506 getActionDefinitionsBuilder({G_MEMCPY, G_MEMMOVE, G_MEMSET}).libcall();
507
508 getActionDefinitionsBuilder({G_DYN_STACKALLOC, G_STACKSAVE, G_STACKRESTORE})
509 .lower();
510
511 // FP Operations
512
513 // FIXME: Support s128 for rv32 when libcall handling is able to use sret.
514 getActionDefinitionsBuilder({G_FADD, G_FSUB, G_FMUL, G_FDIV, G_FMA, G_FSQRT,
515 G_FMAXNUM, G_FMINNUM, G_FMAXIMUMNUM,
516 G_FMINIMUMNUM})
517 .legalFor(ST.hasStdExtF(), {s32})
518 .legalFor(ST.hasStdExtD(), {s64})
519 .legalFor(ST.hasStdExtZfh(), {s16})
520 .libcallFor({s32, s64})
521 .libcallFor(ST.is64Bit(), {s128});
522
523 getActionDefinitionsBuilder({G_FNEG, G_FABS})
524 .legalFor(ST.hasStdExtF(), {s32})
525 .legalFor(ST.hasStdExtD(), {s64})
526 .legalFor(ST.hasStdExtZfh(), {s16})
527 .lowerFor({s32, s64, s128});
528
529 getActionDefinitionsBuilder(G_FREM)
530 .libcallFor({s32, s64})
531 .libcallFor(ST.is64Bit(), {s128})
532 .minScalar(0, s32)
533 .scalarize(0);
534
535 getActionDefinitionsBuilder(G_FCOPYSIGN)
536 .legalFor(ST.hasStdExtF(), {{s32, s32}})
537 .legalFor(ST.hasStdExtD(), {{s64, s64}, {s32, s64}, {s64, s32}})
538 .legalFor(ST.hasStdExtZfh(), {{s16, s16}, {s16, s32}, {s32, s16}})
539 .legalFor(ST.hasStdExtZfh() && ST.hasStdExtD(), {{s16, s64}, {s64, s16}})
540 .lower();
541
542 // FIXME: Use Zfhmin.
543 getActionDefinitionsBuilder(G_FPTRUNC)
544 .legalFor(ST.hasStdExtD(), {{s32, s64}})
545 .legalFor(ST.hasStdExtZfh(), {{s16, s32}})
546 .legalFor(ST.hasStdExtZfh() && ST.hasStdExtD(), {{s16, s64}})
547 .libcallFor({{s32, s64}})
548 .libcallFor(ST.is64Bit(), {{s32, s128}, {s64, s128}});
549 getActionDefinitionsBuilder(G_FPEXT)
550 .legalFor(ST.hasStdExtD(), {{s64, s32}})
551 .legalFor(ST.hasStdExtZfh(), {{s32, s16}})
552 .legalFor(ST.hasStdExtZfh() && ST.hasStdExtD(), {{s64, s16}})
553 .libcallFor({{s64, s32}})
554 .libcallFor(ST.is64Bit(), {{s128, s32}, {s128, s64}});
555
556 getActionDefinitionsBuilder(G_FCMP)
557 .legalFor(ST.hasStdExtF(), {{sXLen, s32}})
558 .legalFor(ST.hasStdExtD(), {{sXLen, s64}})
559 .legalFor(ST.hasStdExtZfh(), {{sXLen, s16}})
560 .clampScalar(0, sXLen, sXLen)
561 .libcallFor({{sXLen, s32}, {sXLen, s64}})
562 .libcallFor(ST.is64Bit(), {{sXLen, s128}});
563
564 // TODO: Support vector version of G_IS_FPCLASS.
565 getActionDefinitionsBuilder(G_IS_FPCLASS)
566 .customFor(ST.hasStdExtF(), {{s1, s32}})
567 .customFor(ST.hasStdExtD(), {{s1, s64}})
568 .customFor(ST.hasStdExtZfh(), {{s1, s16}})
569 .lowerFor({{s1, s32}, {s1, s64}});
570
571 getActionDefinitionsBuilder(G_FCONSTANT)
572 .legalFor(ST.hasStdExtF(), {s32})
573 .legalFor(ST.hasStdExtD(), {s64})
574 .legalFor(ST.hasStdExtZfh(), {s16})
575 .lowerFor({s32, s64, s128});
576
577 getActionDefinitionsBuilder({G_FPTOSI, G_FPTOUI})
578 .legalFor(ST.hasStdExtF(), {{sXLen, s32}})
579 .legalFor(ST.hasStdExtD(), {{sXLen, s64}})
580 .legalFor(ST.hasStdExtZfh(), {{sXLen, s16}})
581 .customFor(ST.is64Bit() && ST.hasStdExtF(), {{s32, s32}})
582 .customFor(ST.is64Bit() && ST.hasStdExtD(), {{s32, s64}})
583 .customFor(ST.is64Bit() && ST.hasStdExtZfh(), {{s32, s16}})
584 .widenScalarToNextPow2(0)
585 .minScalar(0, s32)
586 .libcallFor({{s32, s32}, {s64, s32}, {s32, s64}, {s64, s64}})
587 .libcallFor(ST.is64Bit(), {{s32, s128}, {s64, s128}}) // FIXME RV32.
588 .libcallFor(ST.is64Bit(), {{s128, s32}, {s128, s64}, {s128, s128}});
589
590 getActionDefinitionsBuilder({G_SITOFP, G_UITOFP})
591 .legalFor(ST.hasStdExtF(), {{s32, sXLen}})
592 .legalFor(ST.hasStdExtD(), {{s64, sXLen}})
593 .legalFor(ST.hasStdExtZfh(), {{s16, sXLen}})
594 .widenScalarToNextPow2(1)
595 // Promote to XLen if the operation is legal.
596 .widenScalarIf(
597 [=, &ST](const LegalityQuery &Query) {
598 return Query.Types[0].isScalar() && Query.Types[1].isScalar() &&
599 (Query.Types[1].getSizeInBits() < ST.getXLen()) &&
600 ((ST.hasStdExtF() && Query.Types[0].getSizeInBits() == 32) ||
601 (ST.hasStdExtD() && Query.Types[0].getSizeInBits() == 64) ||
602 (ST.hasStdExtZfh() &&
603 Query.Types[0].getSizeInBits() == 16));
604 },
606 // Otherwise only promote to s32 since we have si libcalls.
607 .minScalar(1, s32)
608 .libcallFor({{s32, s32}, {s64, s32}, {s32, s64}, {s64, s64}})
609 .libcallFor(ST.is64Bit(), {{s128, s32}, {s128, s64}}) // FIXME RV32.
610 .libcallFor(ST.is64Bit(), {{s32, s128}, {s64, s128}, {s128, s128}});
611
612 // FIXME: We can do custom inline expansion like SelectionDAG.
613 getActionDefinitionsBuilder({G_FCEIL, G_FFLOOR, G_FRINT, G_FNEARBYINT,
614 G_INTRINSIC_TRUNC, G_INTRINSIC_ROUND,
615 G_INTRINSIC_ROUNDEVEN})
616 .legalFor(ST.hasStdExtZfa(), {s32})
617 .legalFor(ST.hasStdExtZfa() && ST.hasStdExtD(), {s64})
618 .legalFor(ST.hasStdExtZfa() && ST.hasStdExtZfh(), {s16})
619 .libcallFor({s32, s64})
620 .libcallFor(ST.is64Bit(), {s128});
621
622 getActionDefinitionsBuilder({G_FMAXIMUM, G_FMINIMUM})
623 .legalFor(ST.hasStdExtZfa(), {s32})
624 .legalFor(ST.hasStdExtZfa() && ST.hasStdExtD(), {s64})
625 .legalFor(ST.hasStdExtZfa() && ST.hasStdExtZfh(), {s16});
626
627 getActionDefinitionsBuilder({G_FCOS, G_FSIN, G_FTAN, G_FPOW, G_FLOG, G_FLOG2,
628 G_FLOG10, G_FEXP, G_FEXP2, G_FEXP10, G_FACOS,
629 G_FASIN, G_FATAN, G_FATAN2, G_FCOSH, G_FSINH,
630 G_FTANH})
631 .libcallFor({s32, s64})
632 .libcallFor(ST.is64Bit(), {s128});
633 getActionDefinitionsBuilder({G_FPOWI, G_FLDEXP})
634 .libcallFor({{s32, s32}, {s64, s32}})
635 .libcallFor(ST.is64Bit(), {s128, s32});
636
637 getActionDefinitionsBuilder(G_VASTART).customFor({p0});
638
639 // va_list must be a pointer, but most sized types are pretty easy to handle
640 // as the destination.
641 getActionDefinitionsBuilder(G_VAARG)
642 // TODO: Implement narrowScalar and widenScalar for G_VAARG for types
643 // other than sXLen.
644 .clampScalar(0, sXLen, sXLen)
645 .lowerForCartesianProduct({sXLen, p0}, {p0});
646
647 getActionDefinitionsBuilder(G_VSCALE)
648 .clampScalar(0, sXLen, sXLen)
649 .customFor({sXLen});
650
651 auto &SplatActions =
652 getActionDefinitionsBuilder(G_SPLAT_VECTOR)
653 .legalIf(all(typeIsLegalIntOrFPVec(0, IntOrFPVecTys, ST),
654 typeIs(1, sXLen)))
655 .customIf(all(typeIsLegalBoolVec(0, BoolVecTys, ST), typeIs(1, s1)));
656 // Handle case of s64 element vectors on RV32. If the subtarget does not have
657 // f64, then try to lower it to G_SPLAT_VECTOR_SPLIT_64_VL. If the subtarget
658 // does have f64, then we don't know whether the type is an f64 or an i64,
659 // so mark the G_SPLAT_VECTOR as legal and decide later what to do with it,
660 // depending on how the instructions it consumes are legalized. They are not
661 // legalized yet since legalization is in reverse postorder, so we cannot
662 // make the decision at this moment.
663 if (XLen == 32) {
664 if (ST.hasVInstructionsF64() && ST.hasStdExtD())
665 SplatActions.legalIf(all(
666 typeInSet(0, {nxv1s64, nxv2s64, nxv4s64, nxv8s64}), typeIs(1, s64)));
667 else if (ST.hasVInstructionsI64())
668 SplatActions.customIf(all(
669 typeInSet(0, {nxv1s64, nxv2s64, nxv4s64, nxv8s64}), typeIs(1, s64)));
670 }
671
672 SplatActions.clampScalar(1, sXLen, sXLen);
673
674 LegalityPredicate ExtractSubvecBitcastPred = [=](const LegalityQuery &Query) {
675 LLT DstTy = Query.Types[0];
676 LLT SrcTy = Query.Types[1];
677 return DstTy.getElementType() == LLT::scalar(1) &&
678 DstTy.getElementCount().getKnownMinValue() >= 8 &&
679 SrcTy.getElementCount().getKnownMinValue() >= 8;
680 };
681 getActionDefinitionsBuilder(G_EXTRACT_SUBVECTOR)
682 // We don't have the ability to slide mask vectors down indexed by their
683 // i1 elements; the smallest we can do is i8. Often we are able to bitcast
684 // to equivalent i8 vectors.
685 .bitcastIf(
686 all(typeIsLegalBoolVec(0, BoolVecTys, ST),
687 typeIsLegalBoolVec(1, BoolVecTys, ST), ExtractSubvecBitcastPred),
688 [=](const LegalityQuery &Query) {
689 LLT CastTy = LLT::vector(
690 Query.Types[0].getElementCount().divideCoefficientBy(8), 8);
691 return std::pair(0, CastTy);
692 })
693 .customIf(LegalityPredicates::any(
694 all(typeIsLegalBoolVec(0, BoolVecTys, ST),
695 typeIsLegalBoolVec(1, BoolVecTys, ST)),
696 all(typeIsLegalIntOrFPVec(0, IntOrFPVecTys, ST),
697 typeIsLegalIntOrFPVec(1, IntOrFPVecTys, ST))));
698
699 getActionDefinitionsBuilder(G_INSERT_SUBVECTOR)
700 .customIf(all(typeIsLegalBoolVec(0, BoolVecTys, ST),
701 typeIsLegalBoolVec(1, BoolVecTys, ST)))
702 .customIf(all(typeIsLegalIntOrFPVec(0, IntOrFPVecTys, ST),
703 typeIsLegalIntOrFPVec(1, IntOrFPVecTys, ST)));
704
705 getActionDefinitionsBuilder(G_ATOMIC_CMPXCHG_WITH_SUCCESS)
706 .lowerIf(all(typeInSet(0, {s8, s16, s32, s64}), typeIs(2, p0)));
707
708 getActionDefinitionsBuilder({G_ATOMIC_CMPXCHG, G_ATOMICRMW_ADD})
709 .legalFor(ST.hasStdExtA(), {{sXLen, p0}})
710 .libcallFor(!ST.hasStdExtA(), {{s8, p0}, {s16, p0}, {s32, p0}, {s64, p0}})
711 .clampScalar(0, sXLen, sXLen);
712
713 getActionDefinitionsBuilder(G_ATOMICRMW_SUB)
714 .libcallFor(!ST.hasStdExtA(), {{s8, p0}, {s16, p0}, {s32, p0}, {s64, p0}})
715 .clampScalar(0, sXLen, sXLen)
716 .lower();
717
718 getLegacyLegalizerInfo().computeTables();
719 verify(*ST.getInstrInfo());
720}
721
723 MachineInstr &MI) const {
724 Intrinsic::ID IntrinsicID = cast<GIntrinsic>(MI).getIntrinsicID();
725
726 if (RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntrinsicID))
727 return true;
728
729 switch (IntrinsicID) {
730 default:
731 return false;
732 case Intrinsic::vacopy: {
733 // vacopy arguments must be legal because of the intrinsic signature.
734 // No need to check here.
735
736 MachineIRBuilder &MIRBuilder = Helper.MIRBuilder;
737 MachineRegisterInfo &MRI = *MIRBuilder.getMRI();
738 MachineFunction &MF = *MI.getMF();
739 const DataLayout &DL = MIRBuilder.getDataLayout();
740 LLVMContext &Ctx = MF.getFunction().getContext();
741
742 Register DstLst = MI.getOperand(1).getReg();
743 LLT PtrTy = MRI.getType(DstLst);
744
745 // Load the source va_list
746 Align Alignment = DL.getABITypeAlign(getTypeForLLT(PtrTy, Ctx));
748 MachinePointerInfo(), MachineMemOperand::MOLoad, PtrTy, Alignment);
749 auto Tmp = MIRBuilder.buildLoad(PtrTy, MI.getOperand(2), *LoadMMO);
750
751 // Store the result in the destination va_list
754 MIRBuilder.buildStore(Tmp, DstLst, *StoreMMO);
755
756 MI.eraseFromParent();
757 return true;
758 }
759 case Intrinsic::riscv_masked_atomicrmw_add:
760 case Intrinsic::riscv_masked_atomicrmw_sub:
761 case Intrinsic::riscv_masked_cmpxchg:
762 return true;
763 }
764}
765
766bool RISCVLegalizerInfo::legalizeVAStart(MachineInstr &MI,
767 MachineIRBuilder &MIRBuilder) const {
768 // Stores the address of the VarArgsFrameIndex slot into the memory location
769 assert(MI.getOpcode() == TargetOpcode::G_VASTART);
770 MachineFunction *MF = MI.getParent()->getParent();
772 int FI = FuncInfo->getVarArgsFrameIndex();
773 LLT AddrTy = MIRBuilder.getMRI()->getType(MI.getOperand(0).getReg());
774 auto FINAddr = MIRBuilder.buildFrameIndex(AddrTy, FI);
775 assert(MI.hasOneMemOperand());
776 MIRBuilder.buildStore(FINAddr, MI.getOperand(0).getReg(),
777 *MI.memoperands()[0]);
778 MI.eraseFromParent();
779 return true;
780}
781
782bool RISCVLegalizerInfo::legalizeBRJT(MachineInstr &MI,
783 MachineIRBuilder &MIRBuilder) const {
784 MachineRegisterInfo &MRI = *MIRBuilder.getMRI();
785 auto &MF = *MI.getParent()->getParent();
786 const MachineJumpTableInfo *MJTI = MF.getJumpTableInfo();
787 unsigned EntrySize = MJTI->getEntrySize(MF.getDataLayout());
788
789 Register PtrReg = MI.getOperand(0).getReg();
790 LLT PtrTy = MRI.getType(PtrReg);
791 Register IndexReg = MI.getOperand(2).getReg();
792 LLT IndexTy = MRI.getType(IndexReg);
793
794 if (!isPowerOf2_32(EntrySize))
795 return false;
796
797 auto ShiftAmt = MIRBuilder.buildConstant(IndexTy, Log2_32(EntrySize));
798 IndexReg = MIRBuilder.buildShl(IndexTy, IndexReg, ShiftAmt).getReg(0);
799
800 auto Addr = MIRBuilder.buildPtrAdd(PtrTy, PtrReg, IndexReg);
801
804 EntrySize, Align(MJTI->getEntryAlignment(MF.getDataLayout())));
805
806 Register TargetReg;
807 switch (MJTI->getEntryKind()) {
808 default:
809 return false;
811 // For PIC, the sequence is:
812 // BRIND(load(Jumptable + index) + RelocBase)
813 // RelocBase can be JumpTable, GOT or some sort of global base.
814 unsigned LoadOpc =
815 STI.is64Bit() ? TargetOpcode::G_SEXTLOAD : TargetOpcode::G_LOAD;
816 auto Load = MIRBuilder.buildLoadInstr(LoadOpc, IndexTy, Addr, *MMO);
817 TargetReg = MIRBuilder.buildPtrAdd(PtrTy, PtrReg, Load).getReg(0);
818 break;
819 }
821 auto Load = MIRBuilder.buildLoadInstr(TargetOpcode::G_SEXTLOAD, IndexTy,
822 Addr, *MMO);
823 TargetReg = MIRBuilder.buildIntToPtr(PtrTy, Load).getReg(0);
824 break;
825 }
827 TargetReg = MIRBuilder.buildLoad(PtrTy, Addr, *MMO).getReg(0);
828 break;
829 }
830
831 MIRBuilder.buildBrIndirect(TargetReg);
832
833 MI.eraseFromParent();
834 return true;
835}
836
837bool RISCVLegalizerInfo::shouldBeInConstantPool(const APInt &APImm,
838 bool ShouldOptForSize) const {
839 assert(APImm.getBitWidth() == 32 || APImm.getBitWidth() == 64);
840 int64_t Imm = APImm.getSExtValue();
841 // All simm32 constants should be handled by isel.
842 // NOTE: The getMaxBuildIntsCost call below should return a value >= 2 making
843 // this check redundant, but small immediates are common so this check
844 // should have better compile time.
845 if (isInt<32>(Imm))
846 return false;
847
848 // We only need to cost the immediate, if constant pool lowering is enabled.
849 if (!STI.useConstantPoolForLargeInts())
850 return false;
851
853 if (Seq.size() <= STI.getMaxBuildIntsCost())
854 return false;
855
856 // Optimizations below are disabled for opt size. If we're optimizing for
857 // size, use a constant pool.
858 if (ShouldOptForSize)
859 return true;
860 //
861 // Special case. See if we can build the constant as (ADD (SLLI X, C), X) do
862 // that if it will avoid a constant pool.
863 // It will require an extra temporary register though.
864 // If we have Zba we can use (ADD_UW X, (SLLI X, 32)) to handle cases where
865 // low and high 32 bits are the same and bit 31 and 63 are set.
866 unsigned ShiftAmt, AddOpc;
868 RISCVMatInt::generateTwoRegInstSeq(Imm, STI, ShiftAmt, AddOpc);
869 return !(!SeqLo.empty() && (SeqLo.size() + 2) <= STI.getMaxBuildIntsCost());
870}
871
872bool RISCVLegalizerInfo::legalizeVScale(MachineInstr &MI,
873 MachineIRBuilder &MIB) const {
874 const LLT XLenTy(STI.getXLenVT());
875 Register Dst = MI.getOperand(0).getReg();
876
877 // We define our scalable vector types for lmul=1 to use a 64 bit known
878 // minimum size. e.g. <vscale x 2 x i32>. VLENB is in bytes so we calculate
879 // vscale as VLENB / 8.
880 static_assert(RISCV::RVVBitsPerBlock == 64, "Unexpected bits per block!");
881 if (STI.getRealMinVLen() < RISCV::RVVBitsPerBlock)
882 // Support for VLEN==32 is incomplete.
883 return false;
884
885 // We assume VLENB is a multiple of 8. We manually choose the best shift
886 // here because SimplifyDemandedBits isn't always able to simplify it.
887 uint64_t Val = MI.getOperand(1).getCImm()->getZExtValue();
888 if (isPowerOf2_64(Val)) {
889 uint64_t Log2 = Log2_64(Val);
890 if (Log2 < 3) {
891 auto VLENB = MIB.buildInstr(RISCV::G_READ_VLENB, {XLenTy}, {});
892 MIB.buildLShr(Dst, VLENB, MIB.buildConstant(XLenTy, 3 - Log2));
893 } else if (Log2 > 3) {
894 auto VLENB = MIB.buildInstr(RISCV::G_READ_VLENB, {XLenTy}, {});
895 MIB.buildShl(Dst, VLENB, MIB.buildConstant(XLenTy, Log2 - 3));
896 } else {
897 MIB.buildInstr(RISCV::G_READ_VLENB, {Dst}, {});
898 }
899 } else if ((Val % 8) == 0) {
900 // If the multiplier is a multiple of 8, scale it down to avoid needing
901 // to shift the VLENB value.
902 auto VLENB = MIB.buildInstr(RISCV::G_READ_VLENB, {XLenTy}, {});
903 MIB.buildMul(Dst, VLENB, MIB.buildConstant(XLenTy, Val / 8));
904 } else {
905 auto VLENB = MIB.buildInstr(RISCV::G_READ_VLENB, {XLenTy}, {});
906 auto VScale = MIB.buildLShr(XLenTy, VLENB, MIB.buildConstant(XLenTy, 3));
907 MIB.buildMul(Dst, VScale, MIB.buildConstant(XLenTy, Val));
908 }
909 MI.eraseFromParent();
910 return true;
911}
912
913// Custom-lower extensions from mask vectors by using a vselect either with 1
914// for zero/any-extension or -1 for sign-extension:
915// (vXiN = (s|z)ext vXi1:vmask) -> (vXiN = vselect vmask, (-1 or 1), 0)
916// Note that any-extension is lowered identically to zero-extension.
917bool RISCVLegalizerInfo::legalizeExt(MachineInstr &MI,
918 MachineIRBuilder &MIB) const {
919
920 unsigned Opc = MI.getOpcode();
921 assert(Opc == TargetOpcode::G_ZEXT || Opc == TargetOpcode::G_SEXT ||
922 Opc == TargetOpcode::G_ANYEXT);
923
924 MachineRegisterInfo &MRI = *MIB.getMRI();
925 Register Dst = MI.getOperand(0).getReg();
926 Register Src = MI.getOperand(1).getReg();
927
928 LLT DstTy = MRI.getType(Dst);
929 int64_t ExtTrueVal = Opc == TargetOpcode::G_SEXT ? -1 : 1;
930 LLT DstEltTy = DstTy.getElementType();
931 auto SplatZero = MIB.buildSplatVector(DstTy, MIB.buildConstant(DstEltTy, 0));
932 auto SplatTrue =
933 MIB.buildSplatVector(DstTy, MIB.buildConstant(DstEltTy, ExtTrueVal));
934 MIB.buildSelect(Dst, Src, SplatTrue, SplatZero);
935
936 MI.eraseFromParent();
937 return true;
938}
939
940bool RISCVLegalizerInfo::legalizeLoadStore(MachineInstr &MI,
941 LegalizerHelper &Helper,
942 MachineIRBuilder &MIB) const {
944 "Machine instructions must be Load/Store.");
945 MachineRegisterInfo &MRI = *MIB.getMRI();
946 MachineFunction *MF = MI.getMF();
947 const DataLayout &DL = MIB.getDataLayout();
948 LLVMContext &Ctx = MF->getFunction().getContext();
949
950 Register DstReg = MI.getOperand(0).getReg();
951 LLT DataTy = MRI.getType(DstReg);
952 if (!DataTy.isVector())
953 return false;
954
955 if (!MI.hasOneMemOperand())
956 return false;
957
958 MachineMemOperand *MMO = *MI.memoperands_begin();
959
960 const auto *TLI = STI.getTargetLowering();
961 EVT VT = EVT::getEVT(getTypeForLLT(DataTy, Ctx));
962
963 if (TLI->allowsMemoryAccessForAlignment(Ctx, DL, VT, *MMO))
964 return true;
965
966 unsigned EltSizeBits = DataTy.getScalarSizeInBits();
967 assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) &&
968 "Unexpected unaligned RVV load type");
969
970 // Calculate the new vector type with i8 elements
971 unsigned NumElements =
972 DataTy.getElementCount().getKnownMinValue() * (EltSizeBits / 8);
973 LLT NewDataTy = LLT::scalable_vector(NumElements, 8);
974
975 Helper.bitcast(MI, 0, NewDataTy);
976
977 return true;
978}
979
980/// Return the type of the mask type suitable for masking the provided
981/// vector type. This is simply an i1 element type vector of the same
982/// (possibly scalable) length.
983static LLT getMaskTypeFor(LLT VecTy) {
984 assert(VecTy.isVector());
985 ElementCount EC = VecTy.getElementCount();
986 return LLT::vector(EC, LLT::scalar(1));
987}
988
989/// Creates an all ones mask suitable for masking a vector of type VecTy with
990/// vector length VL.
992 MachineIRBuilder &MIB,
994 LLT MaskTy = getMaskTypeFor(VecTy);
995 return MIB.buildInstr(RISCV::G_VMSET_VL, {MaskTy}, {VL});
996}
997
998/// Gets the two common "VL" operands: an all-ones mask and the vector length.
999/// VecTy is a scalable vector type.
1000static std::pair<MachineInstrBuilder, MachineInstrBuilder>
1002 assert(VecTy.isScalableVector() && "Expecting scalable container type");
1003 const RISCVSubtarget &STI = MIB.getMF().getSubtarget<RISCVSubtarget>();
1004 LLT XLenTy(STI.getXLenVT());
1005 auto VL = MIB.buildConstant(XLenTy, -1);
1006 auto Mask = buildAllOnesMask(VecTy, VL, MIB, MRI);
1007 return {Mask, VL};
1008}
1009
1011buildSplatPartsS64WithVL(const DstOp &Dst, const SrcOp &Passthru, Register Lo,
1012 Register Hi, const SrcOp &VL, MachineIRBuilder &MIB,
1014 // TODO: If the Hi bits of the splat are undefined, then it's fine to just
1015 // splat Lo even if it might be sign extended. I don't think we have
1016 // introduced a case where we're build a s64 where the upper bits are undef
1017 // yet.
1018
1019 // Fall back to a stack store and stride x0 vector load.
1020 // TODO: need to lower G_SPLAT_VECTOR_SPLIT_I64. This is done in
1021 // preprocessDAG in SDAG.
1022 return MIB.buildInstr(RISCV::G_SPLAT_VECTOR_SPLIT_I64_VL, {Dst},
1023 {Passthru, Lo, Hi, VL});
1024}
1025
1027buildSplatSplitS64WithVL(const DstOp &Dst, const SrcOp &Passthru,
1028 const SrcOp &Scalar, const SrcOp &VL,
1030 assert(Scalar.getLLTTy(MRI) == LLT::scalar(64) && "Unexpected VecTy!");
1031 auto Unmerge = MIB.buildUnmerge(LLT::scalar(32), Scalar);
1032 return buildSplatPartsS64WithVL(Dst, Passthru, Unmerge.getReg(0),
1033 Unmerge.getReg(1), VL, MIB, MRI);
1034}
1035
1036// Lower splats of s1 types to G_ICMP. For each mask vector type, we have a
1037// legal equivalently-sized i8 type, so we can use that as a go-between.
1038// Splats of s1 types that have constant value can be legalized as VMSET_VL or
1039// VMCLR_VL.
1040bool RISCVLegalizerInfo::legalizeSplatVector(MachineInstr &MI,
1041 MachineIRBuilder &MIB) const {
1042 assert(MI.getOpcode() == TargetOpcode::G_SPLAT_VECTOR);
1043
1044 MachineRegisterInfo &MRI = *MIB.getMRI();
1045
1046 Register Dst = MI.getOperand(0).getReg();
1047 Register SplatVal = MI.getOperand(1).getReg();
1048
1049 LLT VecTy = MRI.getType(Dst);
1050 LLT XLenTy(STI.getXLenVT());
1051
1052 // Handle case of s64 element vectors on rv32
1053 if (XLenTy.getSizeInBits() == 32 &&
1054 VecTy.getElementType().getSizeInBits() == 64) {
1055 auto [_, VL] = buildDefaultVLOps(MRI.getType(Dst), MIB, MRI);
1056 buildSplatSplitS64WithVL(Dst, MIB.buildUndef(VecTy), SplatVal, VL, MIB,
1057 MRI);
1058 MI.eraseFromParent();
1059 return true;
1060 }
1061
1062 // All-zeros or all-ones splats are handled specially.
1063 MachineInstr &SplatValMI = *MRI.getVRegDef(SplatVal);
1064 if (isAllOnesOrAllOnesSplat(SplatValMI, MRI)) {
1065 auto VL = buildDefaultVLOps(VecTy, MIB, MRI).second;
1066 MIB.buildInstr(RISCV::G_VMSET_VL, {Dst}, {VL});
1067 MI.eraseFromParent();
1068 return true;
1069 }
1070 if (isNullOrNullSplat(SplatValMI, MRI)) {
1071 auto VL = buildDefaultVLOps(VecTy, MIB, MRI).second;
1072 MIB.buildInstr(RISCV::G_VMCLR_VL, {Dst}, {VL});
1073 MI.eraseFromParent();
1074 return true;
1075 }
1076
1077 // Handle non-constant mask splat (i.e. not sure if it's all zeros or all
1078 // ones) by promoting it to an s8 splat.
1079 LLT InterEltTy = LLT::scalar(8);
1080 LLT InterTy = VecTy.changeElementType(InterEltTy);
1081 auto ZExtSplatVal = MIB.buildZExt(InterEltTy, SplatVal);
1082 auto And =
1083 MIB.buildAnd(InterEltTy, ZExtSplatVal, MIB.buildConstant(InterEltTy, 1));
1084 auto LHS = MIB.buildSplatVector(InterTy, And);
1085 auto ZeroSplat =
1086 MIB.buildSplatVector(InterTy, MIB.buildConstant(InterEltTy, 0));
1087 MIB.buildICmp(CmpInst::Predicate::ICMP_NE, Dst, LHS, ZeroSplat);
1088 MI.eraseFromParent();
1089 return true;
1090}
1091
1092static LLT getLMUL1Ty(LLT VecTy) {
1093 assert(VecTy.getElementType().getSizeInBits() <= 64 &&
1094 "Unexpected vector LLT");
1096 VecTy.getElementType().getSizeInBits(),
1097 VecTy.getElementType());
1098}
1099
1100bool RISCVLegalizerInfo::legalizeExtractSubvector(MachineInstr &MI,
1101 MachineIRBuilder &MIB) const {
1102 GExtractSubvector &ES = cast<GExtractSubvector>(MI);
1103
1104 MachineRegisterInfo &MRI = *MIB.getMRI();
1105
1106 Register Dst = ES.getReg(0);
1107 Register Src = ES.getSrcVec();
1108 uint64_t Idx = ES.getIndexImm();
1109
1110 // With an index of 0 this is a cast-like subvector, which can be performed
1111 // with subregister operations.
1112 if (Idx == 0)
1113 return true;
1114
1115 LLT LitTy = MRI.getType(Dst);
1116 LLT BigTy = MRI.getType(Src);
1117
1118 if (LitTy.getElementType() == LLT::scalar(1)) {
1119 // We can't slide this mask vector up indexed by its i1 elements.
1120 // This poses a problem when we wish to insert a scalable vector which
1121 // can't be re-expressed as a larger type. Just choose the slow path and
1122 // extend to a larger type, then truncate back down.
1123 LLT ExtBigTy = BigTy.changeElementType(LLT::scalar(8));
1124 LLT ExtLitTy = LitTy.changeElementType(LLT::scalar(8));
1125 auto BigZExt = MIB.buildZExt(ExtBigTy, Src);
1126 auto ExtractZExt = MIB.buildExtractSubvector(ExtLitTy, BigZExt, Idx);
1127 auto SplatZero = MIB.buildSplatVector(
1128 ExtLitTy, MIB.buildConstant(ExtLitTy.getElementType(), 0));
1129 MIB.buildICmp(CmpInst::Predicate::ICMP_NE, Dst, ExtractZExt, SplatZero);
1130 MI.eraseFromParent();
1131 return true;
1132 }
1133
1134 // extract_subvector scales the index by vscale if the subvector is scalable,
1135 // and decomposeSubvectorInsertExtractToSubRegs takes this into account.
1136 const RISCVRegisterInfo *TRI = STI.getRegisterInfo();
1137 MVT LitTyMVT = getMVTForLLT(LitTy);
1138 auto Decompose =
1140 getMVTForLLT(BigTy), LitTyMVT, Idx, TRI);
1141 unsigned RemIdx = Decompose.second;
1142
1143 // If the Idx has been completely eliminated then this is a subvector extract
1144 // which naturally aligns to a vector register. These can easily be handled
1145 // using subregister manipulation.
1146 if (RemIdx == 0)
1147 return true;
1148
1149 // Else LitTy is M1 or smaller and may need to be slid down: if LitTy
1150 // was > M1 then the index would need to be a multiple of VLMAX, and so would
1151 // divide exactly.
1152 assert(
1155
1156 // If the vector type is an LMUL-group type, extract a subvector equal to the
1157 // nearest full vector register type.
1158 LLT InterLitTy = BigTy;
1159 Register Vec = Src;
1161 getLMUL1Ty(BigTy).getSizeInBits())) {
1162 // If BigTy has an LMUL > 1, then LitTy should have a smaller LMUL, and
1163 // we should have successfully decomposed the extract into a subregister.
1164 assert(Decompose.first != RISCV::NoSubRegister);
1165 InterLitTy = getLMUL1Ty(BigTy);
1166 // SDAG builds a TargetExtractSubreg. We cannot create a a Copy with SubReg
1167 // specified on the source Register (the equivalent) since generic virtual
1168 // register does not allow subregister index.
1169 Vec = MIB.buildExtractSubvector(InterLitTy, Src, Idx - RemIdx).getReg(0);
1170 }
1171
1172 // Slide this vector register down by the desired number of elements in order
1173 // to place the desired subvector starting at element 0.
1174 const LLT XLenTy(STI.getXLenVT());
1175 auto SlidedownAmt = MIB.buildVScale(XLenTy, RemIdx);
1176 auto [Mask, VL] = buildDefaultVLOps(LitTy, MIB, MRI);
1178 auto Slidedown = MIB.buildInstr(
1179 RISCV::G_VSLIDEDOWN_VL, {InterLitTy},
1180 {MIB.buildUndef(InterLitTy), Vec, SlidedownAmt, Mask, VL, Policy});
1181
1182 // Now the vector is in the right position, extract our final subvector. This
1183 // should resolve to a COPY.
1184 MIB.buildExtractSubvector(Dst, Slidedown, 0);
1185
1186 MI.eraseFromParent();
1187 return true;
1188}
1189
1190bool RISCVLegalizerInfo::legalizeInsertSubvector(MachineInstr &MI,
1191 LegalizerHelper &Helper,
1192 MachineIRBuilder &MIB) const {
1193 GInsertSubvector &IS = cast<GInsertSubvector>(MI);
1194
1195 MachineRegisterInfo &MRI = *MIB.getMRI();
1196
1197 Register Dst = IS.getReg(0);
1198 Register BigVec = IS.getBigVec();
1199 Register LitVec = IS.getSubVec();
1200 uint64_t Idx = IS.getIndexImm();
1201
1202 LLT BigTy = MRI.getType(BigVec);
1203 LLT LitTy = MRI.getType(LitVec);
1204
1205 if (Idx == 0 ||
1206 MRI.getVRegDef(BigVec)->getOpcode() == TargetOpcode::G_IMPLICIT_DEF)
1207 return true;
1208
1209 // We don't have the ability to slide mask vectors up indexed by their i1
1210 // elements; the smallest we can do is i8. Often we are able to bitcast to
1211 // equivalent i8 vectors. Otherwise, we can must zeroextend to equivalent i8
1212 // vectors and truncate down after the insert.
1213 if (LitTy.getElementType() == LLT::scalar(1)) {
1214 auto BigTyMinElts = BigTy.getElementCount().getKnownMinValue();
1215 auto LitTyMinElts = LitTy.getElementCount().getKnownMinValue();
1216 if (BigTyMinElts >= 8 && LitTyMinElts >= 8)
1217 return Helper.bitcast(
1218 IS, 0,
1220
1221 // We can't slide this mask vector up indexed by its i1 elements.
1222 // This poses a problem when we wish to insert a scalable vector which
1223 // can't be re-expressed as a larger type. Just choose the slow path and
1224 // extend to a larger type, then truncate back down.
1225 LLT ExtBigTy = BigTy.changeElementType(LLT::scalar(8));
1226 return Helper.widenScalar(IS, 0, ExtBigTy);
1227 }
1228
1229 const RISCVRegisterInfo *TRI = STI.getRegisterInfo();
1230 unsigned SubRegIdx, RemIdx;
1231 std::tie(SubRegIdx, RemIdx) =
1233 getMVTForLLT(BigTy), getMVTForLLT(LitTy), Idx, TRI);
1234
1235 TypeSize VecRegSize = TypeSize::getScalable(RISCV::RVVBitsPerBlock);
1237 STI.expandVScale(LitTy.getSizeInBits()).getKnownMinValue()));
1238 bool ExactlyVecRegSized =
1239 STI.expandVScale(LitTy.getSizeInBits())
1240 .isKnownMultipleOf(STI.expandVScale(VecRegSize));
1241
1242 // If the Idx has been completely eliminated and this subvector's size is a
1243 // vector register or a multiple thereof, or the surrounding elements are
1244 // undef, then this is a subvector insert which naturally aligns to a vector
1245 // register. These can easily be handled using subregister manipulation.
1246 if (RemIdx == 0 && ExactlyVecRegSized)
1247 return true;
1248
1249 // If the subvector is smaller than a vector register, then the insertion
1250 // must preserve the undisturbed elements of the register. We do this by
1251 // lowering to an EXTRACT_SUBVECTOR grabbing the nearest LMUL=1 vector type
1252 // (which resolves to a subregister copy), performing a VSLIDEUP to place the
1253 // subvector within the vector register, and an INSERT_SUBVECTOR of that
1254 // LMUL=1 type back into the larger vector (resolving to another subregister
1255 // operation). See below for how our VSLIDEUP works. We go via a LMUL=1 type
1256 // to avoid allocating a large register group to hold our subvector.
1257
1258 // VSLIDEUP works by leaving elements 0<i<OFFSET undisturbed, elements
1259 // OFFSET<=i<VL set to the "subvector" and vl<=i<VLMAX set to the tail policy
1260 // (in our case undisturbed). This means we can set up a subvector insertion
1261 // where OFFSET is the insertion offset, and the VL is the OFFSET plus the
1262 // size of the subvector.
1263 const LLT XLenTy(STI.getXLenVT());
1264 LLT InterLitTy = BigTy;
1265 Register AlignedExtract = BigVec;
1266 unsigned AlignedIdx = Idx - RemIdx;
1268 getLMUL1Ty(BigTy).getSizeInBits())) {
1269 InterLitTy = getLMUL1Ty(BigTy);
1270 // Extract a subvector equal to the nearest full vector register type. This
1271 // should resolve to a G_EXTRACT on a subreg.
1272 AlignedExtract =
1273 MIB.buildExtractSubvector(InterLitTy, BigVec, AlignedIdx).getReg(0);
1274 }
1275
1276 auto Insert = MIB.buildInsertSubvector(InterLitTy, MIB.buildUndef(InterLitTy),
1277 LitVec, 0);
1278
1279 auto [Mask, _] = buildDefaultVLOps(BigTy, MIB, MRI);
1280 auto VL = MIB.buildVScale(XLenTy, LitTy.getElementCount().getKnownMinValue());
1281
1282 // If we're inserting into the lowest elements, use a tail undisturbed
1283 // vmv.v.v.
1284 MachineInstrBuilder Inserted;
1285 bool NeedInsertSubvec =
1286 TypeSize::isKnownGT(BigTy.getSizeInBits(), InterLitTy.getSizeInBits());
1287 Register InsertedDst =
1288 NeedInsertSubvec ? MRI.createGenericVirtualRegister(InterLitTy) : Dst;
1289 if (RemIdx == 0) {
1290 Inserted = MIB.buildInstr(RISCV::G_VMV_V_V_VL, {InsertedDst},
1291 {AlignedExtract, Insert, VL});
1292 } else {
1293 auto SlideupAmt = MIB.buildVScale(XLenTy, RemIdx);
1294 // Construct the vector length corresponding to RemIdx + length(LitTy).
1295 VL = MIB.buildAdd(XLenTy, SlideupAmt, VL);
1296 // Use tail agnostic policy if we're inserting over InterLitTy's tail.
1297 ElementCount EndIndex =
1300 if (STI.expandVScale(EndIndex) ==
1301 STI.expandVScale(InterLitTy.getElementCount()))
1303
1304 Inserted =
1305 MIB.buildInstr(RISCV::G_VSLIDEUP_VL, {InsertedDst},
1306 {AlignedExtract, Insert, SlideupAmt, Mask, VL, Policy});
1307 }
1308
1309 // If required, insert this subvector back into the correct vector register.
1310 // This should resolve to an INSERT_SUBREG instruction.
1311 if (NeedInsertSubvec)
1312 MIB.buildInsertSubvector(Dst, BigVec, Inserted, AlignedIdx);
1313
1314 MI.eraseFromParent();
1315 return true;
1316}
1317
1318static unsigned getRISCVWOpcode(unsigned Opcode) {
1319 switch (Opcode) {
1320 default:
1321 llvm_unreachable("Unexpected opcode");
1322 case TargetOpcode::G_ASHR:
1323 return RISCV::G_SRAW;
1324 case TargetOpcode::G_LSHR:
1325 return RISCV::G_SRLW;
1326 case TargetOpcode::G_SHL:
1327 return RISCV::G_SLLW;
1328 case TargetOpcode::G_SDIV:
1329 return RISCV::G_DIVW;
1330 case TargetOpcode::G_UDIV:
1331 return RISCV::G_DIVUW;
1332 case TargetOpcode::G_UREM:
1333 return RISCV::G_REMUW;
1334 case TargetOpcode::G_ROTL:
1335 return RISCV::G_ROLW;
1336 case TargetOpcode::G_ROTR:
1337 return RISCV::G_RORW;
1338 case TargetOpcode::G_CTLZ:
1339 return RISCV::G_CLZW;
1340 case TargetOpcode::G_CTTZ:
1341 return RISCV::G_CTZW;
1342 case TargetOpcode::G_FPTOSI:
1343 return RISCV::G_FCVT_W_RV64;
1344 case TargetOpcode::G_FPTOUI:
1345 return RISCV::G_FCVT_WU_RV64;
1346 }
1347}
1348
1351 LostDebugLocObserver &LocObserver) const {
1352 MachineIRBuilder &MIRBuilder = Helper.MIRBuilder;
1353 MachineRegisterInfo &MRI = *MIRBuilder.getMRI();
1354 MachineFunction &MF = *MI.getParent()->getParent();
1355 switch (MI.getOpcode()) {
1356 default:
1357 // No idea what to do.
1358 return false;
1359 case TargetOpcode::G_ABS:
1360 return Helper.lowerAbsToMaxNeg(MI);
1361 // TODO: G_FCONSTANT
1362 case TargetOpcode::G_CONSTANT: {
1363 const Function &F = MF.getFunction();
1364 // TODO: if PSI and BFI are present, add " ||
1365 // llvm::shouldOptForSize(*CurMBB, PSI, BFI)".
1366 bool ShouldOptForSize = F.hasOptSize();
1367 const ConstantInt *ConstVal = MI.getOperand(1).getCImm();
1368 if (!shouldBeInConstantPool(ConstVal->getValue(), ShouldOptForSize))
1369 return true;
1370 return Helper.lowerConstant(MI);
1371 }
1372 case TargetOpcode::G_SUB:
1373 case TargetOpcode::G_ADD: {
1374 Helper.Observer.changingInstr(MI);
1375 Helper.widenScalarSrc(MI, sXLen, 1, TargetOpcode::G_ANYEXT);
1376 Helper.widenScalarSrc(MI, sXLen, 2, TargetOpcode::G_ANYEXT);
1377
1378 Register DstALU = MRI.createGenericVirtualRegister(sXLen);
1379
1380 MachineOperand &MO = MI.getOperand(0);
1381 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1382 auto DstSext = MIRBuilder.buildSExtInReg(sXLen, DstALU, 32);
1383
1384 MIRBuilder.buildInstr(TargetOpcode::G_TRUNC, {MO}, {DstSext});
1385 MO.setReg(DstALU);
1386
1387 Helper.Observer.changedInstr(MI);
1388 return true;
1389 }
1390 case TargetOpcode::G_SEXT_INREG: {
1391 LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
1392 int64_t SizeInBits = MI.getOperand(2).getImm();
1393 // Source size of 32 is sext.w.
1394 if (DstTy.getSizeInBits() == 64 && SizeInBits == 32)
1395 return true;
1396
1397 if (STI.hasStdExtZbb() && (SizeInBits == 8 || SizeInBits == 16))
1398 return true;
1399
1400 return Helper.lower(MI, 0, /* Unused hint type */ LLT()) ==
1402 }
1403 case TargetOpcode::G_ASHR:
1404 case TargetOpcode::G_LSHR:
1405 case TargetOpcode::G_SHL: {
1406 if (getIConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI)) {
1407 // We don't need a custom node for shift by constant. Just widen the
1408 // source and the shift amount.
1409 unsigned ExtOpc = TargetOpcode::G_ANYEXT;
1410 if (MI.getOpcode() == TargetOpcode::G_ASHR)
1411 ExtOpc = TargetOpcode::G_SEXT;
1412 else if (MI.getOpcode() == TargetOpcode::G_LSHR)
1413 ExtOpc = TargetOpcode::G_ZEXT;
1414
1415 Helper.Observer.changingInstr(MI);
1416 Helper.widenScalarSrc(MI, sXLen, 1, ExtOpc);
1417 Helper.widenScalarSrc(MI, sXLen, 2, TargetOpcode::G_ZEXT);
1418 Helper.widenScalarDst(MI, sXLen);
1419 Helper.Observer.changedInstr(MI);
1420 return true;
1421 }
1422
1423 Helper.Observer.changingInstr(MI);
1424 Helper.widenScalarSrc(MI, sXLen, 1, TargetOpcode::G_ANYEXT);
1425 Helper.widenScalarSrc(MI, sXLen, 2, TargetOpcode::G_ANYEXT);
1426 Helper.widenScalarDst(MI, sXLen);
1427 MI.setDesc(MIRBuilder.getTII().get(getRISCVWOpcode(MI.getOpcode())));
1428 Helper.Observer.changedInstr(MI);
1429 return true;
1430 }
1431 case TargetOpcode::G_SDIV:
1432 case TargetOpcode::G_UDIV:
1433 case TargetOpcode::G_UREM:
1434 case TargetOpcode::G_ROTL:
1435 case TargetOpcode::G_ROTR: {
1436 Helper.Observer.changingInstr(MI);
1437 Helper.widenScalarSrc(MI, sXLen, 1, TargetOpcode::G_ANYEXT);
1438 Helper.widenScalarSrc(MI, sXLen, 2, TargetOpcode::G_ANYEXT);
1439 Helper.widenScalarDst(MI, sXLen);
1440 MI.setDesc(MIRBuilder.getTII().get(getRISCVWOpcode(MI.getOpcode())));
1441 Helper.Observer.changedInstr(MI);
1442 return true;
1443 }
1444 case TargetOpcode::G_CTLZ:
1445 case TargetOpcode::G_CTTZ: {
1446 Helper.Observer.changingInstr(MI);
1447 Helper.widenScalarSrc(MI, sXLen, 1, TargetOpcode::G_ANYEXT);
1448 Helper.widenScalarDst(MI, sXLen);
1449 MI.setDesc(MIRBuilder.getTII().get(getRISCVWOpcode(MI.getOpcode())));
1450 Helper.Observer.changedInstr(MI);
1451 return true;
1452 }
1453 case TargetOpcode::G_FPTOSI:
1454 case TargetOpcode::G_FPTOUI: {
1455 Helper.Observer.changingInstr(MI);
1456 Helper.widenScalarDst(MI, sXLen);
1457 MI.setDesc(MIRBuilder.getTII().get(getRISCVWOpcode(MI.getOpcode())));
1459 Helper.Observer.changedInstr(MI);
1460 return true;
1461 }
1462 case TargetOpcode::G_IS_FPCLASS: {
1463 Register GISFPCLASS = MI.getOperand(0).getReg();
1464 Register Src = MI.getOperand(1).getReg();
1465 const MachineOperand &ImmOp = MI.getOperand(2);
1466 MachineIRBuilder MIB(MI);
1467
1468 // Turn LLVM IR's floating point classes to that in RISC-V,
1469 // by simply rotating the 10-bit immediate right by two bits.
1470 APInt GFpClassImm(10, static_cast<uint64_t>(ImmOp.getImm()));
1471 auto FClassMask = MIB.buildConstant(sXLen, GFpClassImm.rotr(2).zext(XLen));
1472 auto ConstZero = MIB.buildConstant(sXLen, 0);
1473
1474 auto GFClass = MIB.buildInstr(RISCV::G_FCLASS, {sXLen}, {Src});
1475 auto And = MIB.buildAnd(sXLen, GFClass, FClassMask);
1476 MIB.buildICmp(CmpInst::ICMP_NE, GISFPCLASS, And, ConstZero);
1477
1478 MI.eraseFromParent();
1479 return true;
1480 }
1481 case TargetOpcode::G_BRJT:
1482 return legalizeBRJT(MI, MIRBuilder);
1483 case TargetOpcode::G_VASTART:
1484 return legalizeVAStart(MI, MIRBuilder);
1485 case TargetOpcode::G_VSCALE:
1486 return legalizeVScale(MI, MIRBuilder);
1487 case TargetOpcode::G_ZEXT:
1488 case TargetOpcode::G_SEXT:
1489 case TargetOpcode::G_ANYEXT:
1490 return legalizeExt(MI, MIRBuilder);
1491 case TargetOpcode::G_SPLAT_VECTOR:
1492 return legalizeSplatVector(MI, MIRBuilder);
1493 case TargetOpcode::G_EXTRACT_SUBVECTOR:
1494 return legalizeExtractSubvector(MI, MIRBuilder);
1495 case TargetOpcode::G_INSERT_SUBVECTOR:
1496 return legalizeInsertSubvector(MI, Helper, MIRBuilder);
1497 case TargetOpcode::G_LOAD:
1498 case TargetOpcode::G_STORE:
1499 return legalizeLoadStore(MI, Helper, MIRBuilder);
1500 }
1501
1502 llvm_unreachable("expected switch to return");
1503}
unsigned const MachineRegisterInfo * MRI
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
Declares convenience wrapper classes for interpreting MachineInstr instances as specific generic oper...
#define _
IRTranslator LLVM IR MI
#define F(x, y, z)
Definition MD5.cpp:55
This file declares the MachineConstantPool class which is an abstract constant pool to keep track of ...
This file declares the MachineIRBuilder class.
Register const TargetRegisterInfo * TRI
Promote Memory to Register
Definition Mem2Reg.cpp:110
#define P(N)
ppc ctr loops verify
static LLT getLMUL1Ty(LLT VecTy)
static MachineInstrBuilder buildAllOnesMask(LLT VecTy, const SrcOp &VL, MachineIRBuilder &MIB, MachineRegisterInfo &MRI)
Creates an all ones mask suitable for masking a vector of type VecTy with vector length VL.
static std::pair< MachineInstrBuilder, MachineInstrBuilder > buildDefaultVLOps(LLT VecTy, MachineIRBuilder &MIB, MachineRegisterInfo &MRI)
Gets the two common "VL" operands: an all-ones mask and the vector length.
static LegalityPredicate typeIsLegalBoolVec(unsigned TypeIdx, std::initializer_list< LLT > BoolVecTys, const RISCVSubtarget &ST)
static MachineInstrBuilder buildSplatSplitS64WithVL(const DstOp &Dst, const SrcOp &Passthru, const SrcOp &Scalar, const SrcOp &VL, MachineIRBuilder &MIB, MachineRegisterInfo &MRI)
static LegalityPredicate typeIsLegalIntOrFPVec(unsigned TypeIdx, std::initializer_list< LLT > IntOrFPVecTys, const RISCVSubtarget &ST)
static MachineInstrBuilder buildSplatPartsS64WithVL(const DstOp &Dst, const SrcOp &Passthru, Register Lo, Register Hi, const SrcOp &VL, MachineIRBuilder &MIB, MachineRegisterInfo &MRI)
static LLT getMaskTypeFor(LLT VecTy)
Return the type of the mask type suitable for masking the provided vector type.
static LegalityPredicate typeIsLegalPtrVec(unsigned TypeIdx, std::initializer_list< LLT > PtrVecTys, const RISCVSubtarget &ST)
static unsigned getRISCVWOpcode(unsigned Opcode)
This file declares the targeting of the Machinelegalizer class for RISC-V.
Value * LHS
Class for arbitrary precision integers.
Definition APInt.h:78
LLVM_ABI APInt zext(unsigned width) const
Zero extend to a new width.
Definition APInt.cpp:1012
unsigned getBitWidth() const
Return the number of bits in the APInt.
Definition APInt.h:1488
LLVM_ABI APInt rotr(unsigned rotateAmt) const
Rotate right by rotateAmt.
Definition APInt.cpp:1154
int64_t getSExtValue() const
Get sign extended value.
Definition APInt.h:1562
@ ICMP_NE
not equal
Definition InstrTypes.h:700
This is the shared class of boolean and integer constants.
Definition Constants.h:87
const APInt & getValue() const
Return the constant as an APInt value reference.
Definition Constants.h:154
A parsed version of the target data layout string in and methods for querying it.
Definition DataLayout.h:63
static constexpr ElementCount getScalable(ScalarTy MinVal)
Definition TypeSize.h:312
LLVMContext & getContext() const
getContext - Return a reference to the LLVMContext associated with this function.
Definition Function.cpp:359
virtual void changingInstr(MachineInstr &MI)=0
This instruction is about to be mutated in some way.
virtual void changedInstr(MachineInstr &MI)=0
This instruction was mutated in some way.
Register getReg(unsigned Idx) const
Access the Idx'th operand as a register and return it.
constexpr bool isScalableVector() const
Returns true if the LLT is a scalable vector.
constexpr unsigned getScalarSizeInBits() const
static constexpr LLT scalable_vector(unsigned MinNumElements, unsigned ScalarSizeInBits)
Get a low-level scalable vector of some number of elements and element width.
constexpr LLT changeElementType(LLT NewEltTy) const
If this type is a vector, return a vector with the same number of elements but the new element type.
static constexpr LLT vector(ElementCount EC, unsigned ScalarSizeInBits)
Get a low-level vector of some number of elements and element width.
static constexpr LLT scalar(unsigned SizeInBits)
Get a low-level scalar or aggregate "bag of bits".
constexpr bool isVector() const
static constexpr LLT pointer(unsigned AddressSpace, unsigned SizeInBits)
Get a low-level pointer in the given address space.
constexpr TypeSize getSizeInBits() const
Returns the total size of the type. Must only be called on sized types.
constexpr LLT getElementType() const
Returns the vector's element type. Only valid for vector types.
constexpr ElementCount getElementCount() const
This is an important class for using LLVM in a threaded context.
Definition LLVMContext.h:68
LegalizeRuleSet & maxScalar(unsigned TypeIdx, const LLT Ty)
Ensure the scalar is at most as wide as Ty.
LegalizeRuleSet & lower()
The instruction is lowered.
LegalizeRuleSet & clampScalar(unsigned TypeIdx, const LLT MinTy, const LLT MaxTy)
Limit the range of scalar sizes to MinTy and MaxTy.
LegalizeRuleSet & customIf(LegalityPredicate Predicate)
LegalizeRuleSet & widenScalarToNextPow2(unsigned TypeIdx, unsigned MinSize=0)
Widen the scalar to the next power of two that is at least MinSize.
LegalizeRuleSet & customFor(std::initializer_list< LLT > Types)
LLVM_ABI void widenScalarSrc(MachineInstr &MI, LLT WideTy, unsigned OpIdx, unsigned ExtOpcode)
Legalize a single operand OpIdx of the machine instruction MI as a Use by extending the operand's typ...
LLVM_ABI LegalizeResult lowerAbsToMaxNeg(MachineInstr &MI)
LLVM_ABI LegalizeResult bitcast(MachineInstr &MI, unsigned TypeIdx, LLT Ty)
Legalize an instruction by replacing the value type.
@ Legalized
Instruction has been legalized and the MachineFunction changed.
LLVM_ABI LegalizeResult lower(MachineInstr &MI, unsigned TypeIdx, LLT Ty)
Legalize an instruction by splitting it into simpler parts, hopefully understood by the target.
GISelChangeObserver & Observer
To keep track of changes made by the LegalizerHelper.
LLVM_ABI LegalizeResult widenScalar(MachineInstr &MI, unsigned TypeIdx, LLT WideTy)
Legalize an instruction by performing the operation on a wider scalar type (for example a 16-bit addi...
MachineIRBuilder & MIRBuilder
Expose MIRBuilder so clients can set their own RecordInsertInstruction functions.
LLVM_ABI LegalizeResult lowerConstant(MachineInstr &MI)
LLVM_ABI void widenScalarDst(MachineInstr &MI, LLT WideTy, unsigned OpIdx=0, unsigned TruncOpcode=TargetOpcode::G_TRUNC)
Legalize a single operand OpIdx of the machine instruction MI as a Def by extending the operand's typ...
LegalizeRuleSet & getActionDefinitionsBuilder(unsigned Opcode)
Get the action definition builder for the given opcode.
const MCInstrDesc & get(unsigned Opcode) const
Return the machine instruction descriptor that corresponds to the specified instruction opcode.
Definition MCInstrInfo.h:64
const TargetSubtargetInfo & getSubtarget() const
getSubtarget - Return the subtarget for which this machine code is being compiled.
MachineMemOperand * getMachineMemOperand(MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, LLT MemTy, Align base_alignment, const AAMDNodes &AAInfo=AAMDNodes(), const MDNode *Ranges=nullptr, SyncScope::ID SSID=SyncScope::System, AtomicOrdering Ordering=AtomicOrdering::NotAtomic, AtomicOrdering FailureOrdering=AtomicOrdering::NotAtomic)
getMachineMemOperand - Allocate a new MachineMemOperand.
const DataLayout & getDataLayout() const
Return the DataLayout attached to the Module associated to this MF.
Function & getFunction()
Return the LLVM function that this machine code represents.
Ty * getInfo()
getInfo - Keep track of various per-function pieces of information for backends that would like to do...
const MachineJumpTableInfo * getJumpTableInfo() const
getJumpTableInfo - Return the jump table info object for the current function.
Helper class to build MachineInstr.
void setInsertPt(MachineBasicBlock &MBB, MachineBasicBlock::iterator II)
Set the insertion point before the specified position.
MachineInstrBuilder buildAdd(const DstOp &Dst, const SrcOp &Src0, const SrcOp &Src1, std::optional< unsigned > Flags=std::nullopt)
Build and insert Res = G_ADD Op0, Op1.
MachineInstrBuilder buildUndef(const DstOp &Res)
Build and insert Res = IMPLICIT_DEF.
MachineInstrBuilder buildUnmerge(ArrayRef< LLT > Res, const SrcOp &Op)
Build and insert Res0, ... = G_UNMERGE_VALUES Op.
MachineInstrBuilder buildSelect(const DstOp &Res, const SrcOp &Tst, const SrcOp &Op0, const SrcOp &Op1, std::optional< unsigned > Flags=std::nullopt)
Build and insert a Res = G_SELECT Tst, Op0, Op1.
MachineInstrBuilder buildMul(const DstOp &Dst, const SrcOp &Src0, const SrcOp &Src1, std::optional< unsigned > Flags=std::nullopt)
Build and insert Res = G_MUL Op0, Op1.
MachineInstrBuilder buildInsertSubvector(const DstOp &Res, const SrcOp &Src0, const SrcOp &Src1, unsigned Index)
Build and insert Res = G_INSERT_SUBVECTOR Src0, Src1, Idx.
MachineInstrBuilder buildAnd(const DstOp &Dst, const SrcOp &Src0, const SrcOp &Src1)
Build and insert Res = G_AND Op0, Op1.
const TargetInstrInfo & getTII()
MachineInstrBuilder buildICmp(CmpInst::Predicate Pred, const DstOp &Res, const SrcOp &Op0, const SrcOp &Op1, std::optional< unsigned > Flags=std::nullopt)
Build and insert a Res = G_ICMP Pred, Op0, Op1.
MachineInstrBuilder buildLShr(const DstOp &Dst, const SrcOp &Src0, const SrcOp &Src1, std::optional< unsigned > Flags=std::nullopt)
MachineBasicBlock::iterator getInsertPt()
Current insertion point for new instructions.
MachineInstrBuilder buildZExt(const DstOp &Res, const SrcOp &Op, std::optional< unsigned > Flags=std::nullopt)
Build and insert Res = G_ZEXT Op.
MachineInstrBuilder buildVScale(const DstOp &Res, unsigned MinElts)
Build and insert Res = G_VSCALE MinElts.
MachineInstrBuilder buildIntToPtr(const DstOp &Dst, const SrcOp &Src)
Build and insert a G_INTTOPTR instruction.
MachineInstrBuilder buildLoad(const DstOp &Res, const SrcOp &Addr, MachineMemOperand &MMO)
Build and insert Res = G_LOAD Addr, MMO.
MachineInstrBuilder buildPtrAdd(const DstOp &Res, const SrcOp &Op0, const SrcOp &Op1, std::optional< unsigned > Flags=std::nullopt)
Build and insert Res = G_PTR_ADD Op0, Op1.
MachineInstrBuilder buildShl(const DstOp &Dst, const SrcOp &Src0, const SrcOp &Src1, std::optional< unsigned > Flags=std::nullopt)
MachineInstrBuilder buildStore(const SrcOp &Val, const SrcOp &Addr, MachineMemOperand &MMO)
Build and insert G_STORE Val, Addr, MMO.
MachineInstrBuilder buildInstr(unsigned Opcode)
Build and insert <empty> = Opcode <empty>.
MachineInstrBuilder buildFrameIndex(const DstOp &Res, int Idx)
Build and insert Res = G_FRAME_INDEX Idx.
MachineFunction & getMF()
Getter for the function we currently build.
const MachineBasicBlock & getMBB() const
Getter for the basic block we currently build.
MachineRegisterInfo * getMRI()
Getter for MRI.
MachineInstrBuilder buildExtractSubvector(const DstOp &Res, const SrcOp &Src, unsigned Index)
Build and insert Res = G_EXTRACT_SUBVECTOR Src, Idx0.
const DataLayout & getDataLayout() const
MachineInstrBuilder buildBrIndirect(Register Tgt)
Build and insert G_BRINDIRECT Tgt.
MachineInstrBuilder buildSplatVector(const DstOp &Res, const SrcOp &Val)
Build and insert Res = G_SPLAT_VECTOR Val.
MachineInstrBuilder buildLoadInstr(unsigned Opcode, const DstOp &Res, const SrcOp &Addr, MachineMemOperand &MMO)
Build and insert Res = <opcode> Addr, MMO.
virtual MachineInstrBuilder buildConstant(const DstOp &Res, const ConstantInt &Val)
Build and insert Res = G_CONSTANT Val.
MachineInstrBuilder buildSExtInReg(const DstOp &Res, const SrcOp &Op, int64_t ImmOp)
Build and insert Res = G_SEXT_INREG Op, ImmOp.
Register getReg(unsigned Idx) const
Get the register for the operand index.
Representation of each machine instruction.
LLVM_ABI unsigned getEntrySize(const DataLayout &TD) const
getEntrySize - Return the size of each entry in the jump table.
@ EK_LabelDifference32
EK_LabelDifference32 - Each entry is the address of the block minus the address of the jump table.
@ EK_Custom32
EK_Custom32 - Each entry is a 32-bit value that is custom lowered by the TargetLowering::LowerCustomJ...
@ EK_BlockAddress
EK_BlockAddress - Each entry is a plain address of block, e.g.: .word LBB123.
LLVM_ABI unsigned getEntryAlignment(const DataLayout &TD) const
getEntryAlignment - Return the alignment of each entry in the jump table.
A description of a memory reference used in the backend.
@ MOLoad
The memory access reads data.
@ MOStore
The memory access writes data.
MachineOperand class - Representation of each machine instruction operand.
int64_t getImm() const
LLVM_ABI void setReg(Register Reg)
Change the register this operand corresponds to.
static MachineOperand CreateImm(int64_t Val)
MachineRegisterInfo - Keep track of information for virtual and physical registers,...
LLT getType(Register Reg) const
Get the low-level type of Reg or LLT{} if Reg is not a generic (target independent) virtual register.
bool legalizeCustom(LegalizerHelper &Helper, MachineInstr &MI, LostDebugLocObserver &LocObserver) const override
Called for instructions with the Custom LegalizationAction.
bool legalizeIntrinsic(LegalizerHelper &Helper, MachineInstr &MI) const override
RISCVLegalizerInfo(const RISCVSubtarget &ST)
RISCVMachineFunctionInfo - This class is derived from MachineFunctionInfo and contains private RISCV-...
static std::pair< unsigned, unsigned > decomposeSubvectorInsertExtractToSubRegs(MVT VecVT, MVT SubVecVT, unsigned InsertExtractIdx, const RISCVRegisterInfo *TRI)
static RISCVVType::VLMUL getLMUL(MVT VT)
Wrapper class representing virtual and physical registers.
Definition Register.h:19
Register getReg() const
static constexpr TypeSize getScalable(ScalarTy MinimumSize)
Definition TypeSize.h:346
constexpr ScalarTy getKnownMinValue() const
Returns the minimum value this quantity can represent.
Definition TypeSize.h:166
static constexpr bool isKnownGT(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
Definition TypeSize.h:223
constexpr LeafTy divideCoefficientBy(ScalarTy RHS) const
We do not provide the '/' operator here because division for polynomial types does not work in the sa...
Definition TypeSize.h:252
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
constexpr std::underlying_type_t< E > Mask()
Get a bitmask with 1s in all places up to the high-order bit of E's largest value.
LLVM_ABI LegalityPredicate typeInSet(unsigned TypeIdx, std::initializer_list< LLT > TypesInit)
True iff the given type index is one of the specified types.
Predicate any(Predicate P0, Predicate P1)
True iff P0 or P1 are true.
Predicate all(Predicate P0, Predicate P1)
True iff P0 and P1 are true.
LLVM_ABI LegalityPredicate typeIs(unsigned TypeIdx, LLT TypesInit)
True iff the given type index is the specified type.
LLVM_ABI LegalizeMutation changeTo(unsigned TypeIdx, LLT Ty)
Select this specific type for the given type index.
InstSeq generateInstSeq(int64_t Val, const MCSubtargetInfo &STI)
InstSeq generateTwoRegInstSeq(int64_t Val, const MCSubtargetInfo &STI, unsigned &ShiftAmt, unsigned &AddOpc)
SmallVector< Inst, 8 > InstSeq
Definition RISCVMatInt.h:43
LLVM_ABI std::pair< unsigned, bool > decodeVLMUL(VLMUL VLMul)
static constexpr unsigned RVVBitsPerBlock
Invariant opcodes: All instruction sets have these as their low opcodes.
This is an optimization pass for GlobalISel generic memory operations.
LLVM_ABI Type * getTypeForLLT(LLT Ty, LLVMContext &C)
Get the type back from LLT.
Definition Utils.cpp:2033
constexpr bool isInt(int64_t x)
Checks if an integer fits into the given bit width.
Definition MathExtras.h:174
LLVM_ABI bool isAllOnesOrAllOnesSplat(const MachineInstr &MI, const MachineRegisterInfo &MRI, bool AllowUndefs=false)
Return true if the value is a constant -1 integer or a splatted vector of a constant -1 integer (with...
Definition Utils.cpp:1607
LLVM_ABI MVT getMVTForLLT(LLT Ty)
Get a rough equivalent of an MVT for a given LLT.
constexpr bool isPowerOf2_64(uint64_t Value)
Return true if the argument is a power of two > 0 (64 bit edition.)
Definition MathExtras.h:293
LLVM_ABI bool isNullOrNullSplat(const MachineInstr &MI, const MachineRegisterInfo &MRI, bool AllowUndefs=false)
Return true if the value is a constant 0 integer or a splatted vector of a constant 0 integer (with n...
Definition Utils.cpp:1589
unsigned Log2_64(uint64_t Value)
Return the floor log base 2 of the specified value, -1 if the value is zero.
Definition MathExtras.h:348
unsigned Log2_32(uint32_t Value)
Return the floor log base 2 of the specified value, -1 if the value is zero.
Definition MathExtras.h:342
std::function< bool(const LegalityQuery &)> LegalityPredicate
constexpr bool isPowerOf2_32(uint32_t Value)
Return true if the argument is a power of two > 0.
Definition MathExtras.h:288
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
Definition Casting.h:548
@ And
Bitwise or logical AND of integers.
DWARFExpression::Operation Op
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:565
LLVM_ABI std::optional< ValueAndVReg > getIConstantVRegValWithLookThrough(Register VReg, const MachineRegisterInfo &MRI, bool LookThroughInstrs=true)
If VReg is defined by a statically evaluable chain of instructions rooted on a G_CONSTANT returns its...
Definition Utils.cpp:433
unsigned Log2(Align A)
Returns the log2 of the alignment.
Definition Alignment.h:208
This struct is a compact representation of a valid (non-zero power of two) alignment.
Definition Alignment.h:39
static LLVM_ABI EVT getEVT(Type *Ty, bool HandleUnknown=false)
Return the value type corresponding to the specified type.
The LegalityQuery object bundles together all the information that's needed to decide whether a given...
ArrayRef< LLT > Types
Matching combinators.
This class contains a discriminated union of information about pointers in memory operands,...
static LLVM_ABI MachinePointerInfo getJumpTable(MachineFunction &MF)
Return a MachinePointerInfo record that refers to a jump table entry.