LLVM 22.0.0git
SparseSet.h
Go to the documentation of this file.
1//===- llvm/ADT/SparseSet.h - Sparse set ------------------------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8///
9/// \file
10/// This file defines the SparseSet class derived from the version described in
11/// Briggs, Torczon, "An efficient representation for sparse sets", ACM Letters
12/// on Programming Languages and Systems, Volume 2 Issue 1-4, March-Dec. 1993.
13///
14/// A sparse set holds a small number of objects identified by integer keys from
15/// a moderately sized universe. The sparse set uses more memory than other
16/// containers in order to provide faster operations.
17///
18//===----------------------------------------------------------------------===//
19
20#ifndef LLVM_ADT_SPARSESET_H
21#define LLVM_ADT_SPARSESET_H
22
24#include "llvm/ADT/identity.h"
26#include <cassert>
27#include <cstdint>
28#include <cstdlib>
29#include <limits>
30#include <utility>
31
32namespace llvm {
33
34/// SparseSetValTraits - Objects in a SparseSet are identified by keys that can
35/// be uniquely converted to a small integer less than the set's universe. This
36/// class allows the set to hold values that differ from the set's key type as
37/// long as an index can still be derived from the value. SparseSet never
38/// directly compares ValueT, only their indices, so it can map keys to
39/// arbitrary values. SparseSetValTraits computes the index from the value
40/// object. To compute the index from a key, SparseSet uses a separate
41/// KeyFunctorT template argument.
42///
43/// A simple type declaration, SparseSet<Type>, handles these cases:
44/// - unsigned key, identity index, identity value
45/// - unsigned key, identity index, fat value providing getSparseSetIndex()
46///
47/// The type declaration SparseSet<Type, UnaryFunction> handles:
48/// - unsigned key, remapped index, identity value (virtual registers)
49/// - pointer key, pointer-derived index, identity value (node+ID)
50/// - pointer key, pointer-derived index, fat value with getSparseSetIndex()
51///
52/// Only other, unexpected cases require specializing SparseSetValTraits.
53///
54/// For best results, ValueT should not require a destructor.
55///
56template <typename ValueT> struct SparseSetValTraits {
57 static unsigned getValIndex(const ValueT &Val) {
58 return Val.getSparseSetIndex();
59 }
60};
61
62/// SparseSetValFunctor - Helper class for selecting SparseSetValTraits. The
63/// generic implementation handles ValueT classes which either provide
64/// getSparseSetIndex() or specialize SparseSetValTraits<>.
65///
66template <typename KeyT, typename ValueT, typename KeyFunctorT>
68 unsigned operator()(const ValueT &Val) const {
70 }
71};
72
73/// SparseSetValFunctor<KeyT, KeyT> - Helper class for the common case of
74/// identity key/value sets.
75template <typename KeyT, typename KeyFunctorT>
76struct SparseSetValFunctor<KeyT, KeyT, KeyFunctorT> {
77 unsigned operator()(const KeyT &Key) const { return KeyFunctorT()(Key); }
78};
79
80/// SparseSet - Fast set implementation for objects that can be identified by
81/// small unsigned keys.
82///
83/// SparseSet allocates memory proportional to the size of the key universe, so
84/// it is not recommended for building composite data structures. It is useful
85/// for algorithms that require a single set with fast operations.
86///
87/// Compared to DenseSet and DenseMap, SparseSet provides constant-time fast
88/// clear() and iteration as fast as a vector. The find(), insert(), and
89/// erase() operations are all constant time, and typically faster than a hash
90/// table. The iteration order doesn't depend on numerical key values, it only
91/// depends on the order of insert() and erase() operations. When no elements
92/// have been erased, the iteration order is the insertion order.
93///
94/// Compared to BitVector, SparseSet<unsigned> uses 8x-40x more memory, but
95/// offers constant-time clear() and size() operations as well as fast
96/// iteration independent on the size of the universe.
97///
98/// SparseSet contains a dense vector holding all the objects and a sparse
99/// array holding indexes into the dense vector. Most of the memory is used by
100/// the sparse array which is the size of the key universe. The SparseT
101/// template parameter provides a space/speed tradeoff for sets holding many
102/// elements.
103///
104/// When SparseT is uint32_t, find() only touches 2 cache lines, but the sparse
105/// array uses 4 x Universe bytes.
106///
107/// When SparseT is uint8_t (the default), find() touches up to 2+[N/256] cache
108/// lines, but the sparse array is 4x smaller. N is the number of elements in
109/// the set.
110///
111/// For sets that may grow to thousands of elements, SparseT should be set to
112/// uint16_t or uint32_t.
113///
114/// @tparam ValueT The type of objects in the set.
115/// @tparam KeyFunctorT A functor that computes an unsigned index from KeyT.
116/// @tparam SparseT An unsigned integer type. See above.
117///
118template <typename ValueT, typename KeyFunctorT = identity<unsigned>,
119 typename SparseT = uint8_t>
121 static_assert(std::is_unsigned_v<SparseT>,
122 "SparseT must be an unsigned integer type");
123
124 using KeyT = typename KeyFunctorT::argument_type;
125 using DenseT = SmallVector<ValueT, 8>;
126 using size_type = unsigned;
127 DenseT Dense;
128
129 struct Deleter {
130 void operator()(SparseT *S) { free(S); }
131 };
132 std::unique_ptr<SparseT[], Deleter> Sparse;
133
134 unsigned Universe = 0;
135 KeyFunctorT KeyIndexOf;
137
138public:
140 using reference = ValueT &;
141 using const_reference = const ValueT &;
142 using pointer = ValueT *;
143 using const_pointer = const ValueT *;
144
145 SparseSet() = default;
146 SparseSet(const SparseSet &) = delete;
147 SparseSet &operator=(const SparseSet &) = delete;
148 SparseSet(SparseSet &&) = default;
149
150 /// setUniverse - Set the universe size which determines the largest key the
151 /// set can hold. The universe must be sized before any elements can be
152 /// added.
153 ///
154 /// @param U Universe size. All object keys must be less than U.
155 ///
156 void setUniverse(unsigned U) {
157 // It's not hard to resize the universe on a non-empty set, but it doesn't
158 // seem like a likely use case, so we can add that code when we need it.
159 assert(empty() && "Can only resize universe on an empty map");
160 // Hysteresis prevents needless reallocations.
161 if (U >= Universe / 4 && U <= Universe)
162 return;
163 // The Sparse array doesn't actually need to be initialized, so malloc
164 // would be enough here, but that will cause tools like valgrind to
165 // complain about branching on uninitialized data.
166 Sparse.reset(static_cast<SparseT *>(safe_calloc(U, sizeof(SparseT))));
167 Universe = U;
168 }
169
170 // Import trivial vector stuff from DenseT.
171 using iterator = typename DenseT::iterator;
173
174 const_iterator begin() const { return Dense.begin(); }
175 const_iterator end() const { return Dense.end(); }
176 iterator begin() { return Dense.begin(); }
177 iterator end() { return Dense.end(); }
178
179 /// empty - Returns true if the set is empty.
180 ///
181 /// This is not the same as BitVector::empty().
182 ///
183 bool empty() const { return Dense.empty(); }
184
185 /// size - Returns the number of elements in the set.
186 ///
187 /// This is not the same as BitVector::size() which returns the size of the
188 /// universe.
189 ///
190 size_type size() const { return Dense.size(); }
191
192 /// clear - Clears the set. This is a very fast constant time operation.
193 ///
194 void clear() {
195 // Sparse does not need to be cleared, see find().
196 Dense.clear();
197 }
198
199 /// findIndex - Find an element by its index.
200 ///
201 /// @param Idx A valid index to find.
202 /// @returns An iterator to the element identified by key, or end().
203 ///
204 iterator findIndex(unsigned Idx) {
205 assert(Idx < Universe && "Key out of range");
206 assert(Sparse != nullptr && "Invalid sparse type");
207 const unsigned Stride = std::numeric_limits<SparseT>::max() + 1u;
208 for (unsigned i = Sparse[Idx], e = size(); i < e; i += Stride) {
209 const unsigned FoundIdx = ValIndexOf(Dense[i]);
210 assert(FoundIdx < Universe && "Invalid key in set. Did object mutate?");
211 if (Idx == FoundIdx)
212 return begin() + i;
213 // Stride is 0 when SparseT >= unsigned. We don't need to loop.
214 if (!Stride)
215 break;
216 }
217 return end();
218 }
219
220 /// find - Find an element by its key.
221 ///
222 /// @param Key A valid key to find.
223 /// @returns An iterator to the element identified by key, or end().
224 ///
225 iterator find(const KeyT &Key) { return findIndex(KeyIndexOf(Key)); }
226
227 const_iterator find(const KeyT &Key) const {
228 return const_cast<SparseSet *>(this)->findIndex(KeyIndexOf(Key));
229 }
230
231 /// Check if the set contains the given \c Key.
232 ///
233 /// @param Key A valid key to find.
234 bool contains(const KeyT &Key) const { return find(Key) != end(); }
235
236 /// count - Returns 1 if this set contains an element identified by Key,
237 /// 0 otherwise.
238 ///
239 size_type count(const KeyT &Key) const { return contains(Key) ? 1 : 0; }
240
241 /// insert - Attempts to insert a new element.
242 ///
243 /// If Val is successfully inserted, return (I, true), where I is an iterator
244 /// pointing to the newly inserted element.
245 ///
246 /// If the set already contains an element with the same key as Val, return
247 /// (I, false), where I is an iterator pointing to the existing element.
248 ///
249 /// Insertion invalidates all iterators.
250 ///
251 std::pair<iterator, bool> insert(const ValueT &Val) {
252 unsigned Idx = ValIndexOf(Val);
253 iterator I = findIndex(Idx);
254 if (I != end())
255 return {I, false};
256 Sparse[Idx] = size();
257 Dense.push_back(Val);
258 return {end() - 1, true};
259 }
260
261 /// array subscript - If an element already exists with this key, return it.
262 /// Otherwise, automatically construct a new value from Key, insert it,
263 /// and return the newly inserted element.
264 ValueT &operator[](const KeyT &Key) { return *insert(ValueT(Key)).first; }
265
267 // Sparse does not need to be cleared, see find().
268 return Dense.pop_back_val();
269 }
270
271 /// erase - Erases an existing element identified by a valid iterator.
272 ///
273 /// This invalidates all iterators, but erase() returns an iterator pointing
274 /// to the next element. This makes it possible to erase selected elements
275 /// while iterating over the set:
276 ///
277 /// for (SparseSet::iterator I = Set.begin(); I != Set.end();)
278 /// if (test(*I))
279 /// I = Set.erase(I);
280 /// else
281 /// ++I;
282 ///
283 /// Note that end() changes when elements are erased, unlike std::list.
284 ///
286 assert(unsigned(I - begin()) < size() && "Invalid iterator");
287 if (I != end() - 1) {
288 *I = Dense.back();
289 unsigned BackIdx = ValIndexOf(Dense.back());
290 assert(BackIdx < Universe && "Invalid key in set. Did object mutate?");
291 Sparse[BackIdx] = I - begin();
292 }
293 // This depends on SmallVector::pop_back() not invalidating iterators.
294 // std::vector::pop_back() doesn't give that guarantee.
295 Dense.pop_back();
296 return I;
297 }
298
299 /// erase - Erases an element identified by Key, if it exists.
300 ///
301 /// @param Key The key identifying the element to erase.
302 /// @returns True when an element was erased, false if no element was found.
303 ///
304 bool erase(const KeyT &Key) {
305 iterator I = find(Key);
306 if (I == end())
307 return false;
308 erase(I);
309 return true;
310 }
311};
312
313} // namespace llvm
314
315#endif // LLVM_ADT_SPARSESET_H
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
This file defines MallocAllocator.
#define I(x, y, z)
Definition MD5.cpp:58
This file defines the SmallVector class.
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
size_type size() const
size - Returns the number of elements in the set.
Definition SparseSet.h:190
iterator findIndex(unsigned Idx)
findIndex - Find an element by its index.
Definition SparseSet.h:204
SparseSet & operator=(const SparseSet &)=delete
const ValueT * const_pointer
Definition SparseSet.h:143
iterator erase(iterator I)
erase - Erases an existing element identified by a valid iterator.
Definition SparseSet.h:285
ValueT value_type
Definition SparseSet.h:139
const ValueT & const_reference
Definition SparseSet.h:141
const_iterator find(const KeyT &Key) const
Definition SparseSet.h:227
SparseSet(SparseSet &&)=default
typename DenseT::iterator iterator
Definition SparseSet.h:171
bool empty() const
empty - Returns true if the set is empty.
Definition SparseSet.h:183
size_type count(const KeyT &Key) const
count - Returns 1 if this set contains an element identified by Key, 0 otherwise.
Definition SparseSet.h:239
ValueT * pointer
Definition SparseSet.h:142
ValueT pop_back_val()
Definition SparseSet.h:266
ValueT & reference
Definition SparseSet.h:140
void clear()
clear - Clears the set.
Definition SparseSet.h:194
std::pair< iterator, bool > insert(const ValueT &Val)
insert - Attempts to insert a new element.
Definition SparseSet.h:251
iterator begin()
Definition SparseSet.h:176
SparseSet(const SparseSet &)=delete
const_iterator begin() const
Definition SparseSet.h:174
const_iterator end() const
Definition SparseSet.h:175
ValueT & operator[](const KeyT &Key)
array subscript - If an element already exists with this key, return it.
Definition SparseSet.h:264
void setUniverse(unsigned U)
setUniverse - Set the universe size which determines the largest key the set can hold.
Definition SparseSet.h:156
bool erase(const KeyT &Key)
erase - Erases an element identified by Key, if it exists.
Definition SparseSet.h:304
typename DenseT::const_iterator const_iterator
Definition SparseSet.h:172
SparseSet()=default
bool contains(const KeyT &Key) const
Check if the set contains the given Key.
Definition SparseSet.h:234
iterator find(const KeyT &Key)
find - Find an element by its key.
Definition SparseSet.h:225
iterator end()
Definition SparseSet.h:177
This is an optimization pass for GlobalISel generic memory operations.
LLVM_ATTRIBUTE_RETURNS_NONNULL void * safe_calloc(size_t Count, size_t Sz)
Definition MemAlloc.h:38
LLVM_ATTRIBUTE_VISIBILITY_DEFAULT AnalysisKey InnerAnalysisManagerProxy< AnalysisManagerT, IRUnitT, ExtraArgTs... >::Key
unsigned operator()(const KeyT &Key) const
Definition SparseSet.h:77
SparseSetValFunctor - Helper class for selecting SparseSetValTraits.
Definition SparseSet.h:67
unsigned operator()(const ValueT &Val) const
Definition SparseSet.h:68
SparseSetValTraits - Objects in a SparseSet are identified by keys that can be uniquely converted to ...
Definition SparseSet.h:56
static unsigned getValIndex(const ValueT &Val)
Definition SparseSet.h:57