LLVM 22.0.0git
X86OptimizeLEAs.cpp
Go to the documentation of this file.
1//===- X86OptimizeLEAs.cpp - optimize usage of LEA instructions -----------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines the pass that performs some optimizations with LEA
10// instructions in order to improve performance and code size.
11// Currently, it does two things:
12// 1) If there are two LEA instructions calculating addresses which only differ
13// by displacement inside a basic block, one of them is removed.
14// 2) Address calculations in load and store instructions are replaced by
15// existing LEA def registers where possible.
16//
17//===----------------------------------------------------------------------===//
18
20#include "X86.h"
21#include "X86InstrInfo.h"
22#include "X86Subtarget.h"
23#include "llvm/ADT/DenseMap.h"
25#include "llvm/ADT/Hashing.h"
27#include "llvm/ADT/Statistic.h"
41#include "llvm/IR/DebugLoc.h"
42#include "llvm/IR/Function.h"
43#include "llvm/MC/MCInstrDesc.h"
45#include "llvm/Support/Debug.h"
49#include <cassert>
50#include <cstdint>
51#include <iterator>
52
53using namespace llvm;
54
55#define DEBUG_TYPE "x86-optimize-LEAs"
56
57static cl::opt<bool>
58 DisableX86LEAOpt("disable-x86-lea-opt", cl::Hidden,
59 cl::desc("X86: Disable LEA optimizations."),
60 cl::init(false));
61
62STATISTIC(NumSubstLEAs, "Number of LEA instruction substitutions");
63STATISTIC(NumRedundantLEAs, "Number of redundant LEA instructions removed");
64
65/// Returns true if two machine operands are identical and they are not
66/// physical registers.
67static inline bool isIdenticalOp(const MachineOperand &MO1,
68 const MachineOperand &MO2);
69
70/// Returns true if two address displacement operands are of the same
71/// type and use the same symbol/index/address regardless of the offset.
72static bool isSimilarDispOp(const MachineOperand &MO1,
73 const MachineOperand &MO2);
74
75/// Returns true if the instruction is LEA.
76static inline bool isLEA(const MachineInstr &MI);
77
78namespace {
79
80/// A key based on instruction's memory operands.
81class MemOpKey {
82public:
83 MemOpKey(const MachineOperand *Base, const MachineOperand *Scale,
84 const MachineOperand *Index, const MachineOperand *Segment,
85 const MachineOperand *Disp)
86 : Disp(Disp) {
87 Operands[0] = Base;
88 Operands[1] = Scale;
89 Operands[2] = Index;
90 Operands[3] = Segment;
91 }
92
93 bool operator==(const MemOpKey &Other) const {
94 // Addresses' bases, scales, indices and segments must be identical.
95 for (int i = 0; i < 4; ++i)
96 if (!isIdenticalOp(*Operands[i], *Other.Operands[i]))
97 return false;
98
99 // Addresses' displacements don't have to be exactly the same. It only
100 // matters that they use the same symbol/index/address. Immediates' or
101 // offsets' differences will be taken care of during instruction
102 // substitution.
103 return isSimilarDispOp(*Disp, *Other.Disp);
104 }
105
106 // Address' base, scale, index and segment operands.
107 const MachineOperand *Operands[4];
108
109 // Address' displacement operand.
110 const MachineOperand *Disp;
111};
112
113} // end anonymous namespace
114
115namespace llvm {
116
117/// Provide DenseMapInfo for MemOpKey.
118template <> struct DenseMapInfo<MemOpKey> {
120
121 static inline MemOpKey getEmptyKey() {
122 return MemOpKey(PtrInfo::getEmptyKey(), PtrInfo::getEmptyKey(),
123 PtrInfo::getEmptyKey(), PtrInfo::getEmptyKey(),
124 PtrInfo::getEmptyKey());
125 }
126
127 static inline MemOpKey getTombstoneKey() {
128 return MemOpKey(PtrInfo::getTombstoneKey(), PtrInfo::getTombstoneKey(),
129 PtrInfo::getTombstoneKey(), PtrInfo::getTombstoneKey(),
130 PtrInfo::getTombstoneKey());
131 }
132
133 static unsigned getHashValue(const MemOpKey &Val) {
134 // Checking any field of MemOpKey is enough to determine if the key is
135 // empty or tombstone.
136 assert(Val.Disp != PtrInfo::getEmptyKey() && "Cannot hash the empty key");
137 assert(Val.Disp != PtrInfo::getTombstoneKey() &&
138 "Cannot hash the tombstone key");
139
140 hash_code Hash = hash_combine(*Val.Operands[0], *Val.Operands[1],
141 *Val.Operands[2], *Val.Operands[3]);
142
143 // If the address displacement is an immediate, it should not affect the
144 // hash so that memory operands which differ only be immediate displacement
145 // would have the same hash. If the address displacement is something else,
146 // we should reflect symbol/index/address in the hash.
147 switch (Val.Disp->getType()) {
149 break;
152 Hash = hash_combine(Hash, Val.Disp->getIndex());
153 break;
155 Hash = hash_combine(Hash, Val.Disp->getSymbolName());
156 break;
158 Hash = hash_combine(Hash, Val.Disp->getGlobal());
159 break;
161 Hash = hash_combine(Hash, Val.Disp->getBlockAddress());
162 break;
164 Hash = hash_combine(Hash, Val.Disp->getMCSymbol());
165 break;
167 Hash = hash_combine(Hash, Val.Disp->getMBB());
168 break;
169 default:
170 llvm_unreachable("Invalid address displacement operand");
171 }
172
173 return (unsigned)Hash;
174 }
175
176 static bool isEqual(const MemOpKey &LHS, const MemOpKey &RHS) {
177 // Checking any field of MemOpKey is enough to determine if the key is
178 // empty or tombstone.
179 if (RHS.Disp == PtrInfo::getEmptyKey())
180 return LHS.Disp == PtrInfo::getEmptyKey();
181 if (RHS.Disp == PtrInfo::getTombstoneKey())
182 return LHS.Disp == PtrInfo::getTombstoneKey();
183 return LHS == RHS;
184 }
185};
186
187} // end namespace llvm
188
189/// Returns a hash table key based on memory operands of \p MI. The
190/// number of the first memory operand of \p MI is specified through \p N.
191static inline MemOpKey getMemOpKey(const MachineInstr &MI, unsigned N) {
192 assert((isLEA(MI) || MI.mayLoadOrStore()) &&
193 "The instruction must be a LEA, a load or a store");
194 return MemOpKey(&MI.getOperand(N + X86::AddrBaseReg),
195 &MI.getOperand(N + X86::AddrScaleAmt),
196 &MI.getOperand(N + X86::AddrIndexReg),
197 &MI.getOperand(N + X86::AddrSegmentReg),
198 &MI.getOperand(N + X86::AddrDisp));
199}
200
201static inline bool isIdenticalOp(const MachineOperand &MO1,
202 const MachineOperand &MO2) {
203 return MO1.isIdenticalTo(MO2) && (!MO1.isReg() || !MO1.getReg().isPhysical());
204}
205
206#ifndef NDEBUG
207static bool isValidDispOp(const MachineOperand &MO) {
208 return MO.isImm() || MO.isCPI() || MO.isJTI() || MO.isSymbol() ||
209 MO.isGlobal() || MO.isBlockAddress() || MO.isMCSymbol() || MO.isMBB();
210}
211#endif
212
213static bool isSimilarDispOp(const MachineOperand &MO1,
214 const MachineOperand &MO2) {
215 assert(isValidDispOp(MO1) && isValidDispOp(MO2) &&
216 "Address displacement operand is not valid");
217 return (MO1.isImm() && MO2.isImm()) ||
218 (MO1.isCPI() && MO2.isCPI() && MO1.getIndex() == MO2.getIndex()) ||
219 (MO1.isJTI() && MO2.isJTI() && MO1.getIndex() == MO2.getIndex()) ||
220 (MO1.isSymbol() && MO2.isSymbol() &&
221 MO1.getSymbolName() == MO2.getSymbolName()) ||
222 (MO1.isGlobal() && MO2.isGlobal() &&
223 MO1.getGlobal() == MO2.getGlobal()) ||
224 (MO1.isBlockAddress() && MO2.isBlockAddress() &&
225 MO1.getBlockAddress() == MO2.getBlockAddress()) ||
226 (MO1.isMCSymbol() && MO2.isMCSymbol() &&
227 MO1.getMCSymbol() == MO2.getMCSymbol()) ||
228 (MO1.isMBB() && MO2.isMBB() && MO1.getMBB() == MO2.getMBB());
229}
230
231static inline bool isLEA(const MachineInstr &MI) {
232 unsigned Opcode = MI.getOpcode();
233 return Opcode == X86::LEA16r || Opcode == X86::LEA32r ||
234 Opcode == X86::LEA64r || Opcode == X86::LEA64_32r;
235}
236
237namespace {
238
239class X86OptimizeLEAPass : public MachineFunctionPass {
240public:
241 X86OptimizeLEAPass() : MachineFunctionPass(ID) {}
242
243 StringRef getPassName() const override { return "X86 LEA Optimize"; }
244
245 /// Loop over all of the basic blocks, replacing address
246 /// calculations in load and store instructions, if it's already
247 /// been calculated by LEA. Also, remove redundant LEAs.
248 bool runOnMachineFunction(MachineFunction &MF) override;
249
250 static char ID;
251
252 void getAnalysisUsage(AnalysisUsage &AU) const override {
253 AU.addRequired<ProfileSummaryInfoWrapperPass>();
254 AU.addRequired<LazyMachineBlockFrequencyInfoPass>();
256 }
257
258private:
259 using MemOpMap = DenseMap<MemOpKey, SmallVector<MachineInstr *, 16>>;
260
261 /// Returns a distance between two instructions inside one basic block.
262 /// Negative result means, that instructions occur in reverse order.
263 int calcInstrDist(const MachineInstr &First, const MachineInstr &Last);
264
265 /// Choose the best \p LEA instruction from the \p List to replace
266 /// address calculation in \p MI instruction. Return the address displacement
267 /// and the distance between \p MI and the chosen \p BestLEA in
268 /// \p AddrDispShift and \p Dist.
269 bool chooseBestLEA(const SmallVectorImpl<MachineInstr *> &List,
270 const MachineInstr &MI, MachineInstr *&BestLEA,
271 int64_t &AddrDispShift, int &Dist);
272
273 /// Returns the difference between addresses' displacements of \p MI1
274 /// and \p MI2. The numbers of the first memory operands for the instructions
275 /// are specified through \p N1 and \p N2.
276 int64_t getAddrDispShift(const MachineInstr &MI1, unsigned N1,
277 const MachineInstr &MI2, unsigned N2) const;
278
279 /// Returns true if the \p Last LEA instruction can be replaced by the
280 /// \p First. The difference between displacements of the addresses calculated
281 /// by these LEAs is returned in \p AddrDispShift. It'll be used for proper
282 /// replacement of the \p Last LEA's uses with the \p First's def register.
283 bool isReplaceable(const MachineInstr &First, const MachineInstr &Last,
284 int64_t &AddrDispShift) const;
285
286 /// Find all LEA instructions in the basic block. Also, assign position
287 /// numbers to all instructions in the basic block to speed up calculation of
288 /// distance between them.
289 void findLEAs(const MachineBasicBlock &MBB, MemOpMap &LEAs);
290
291 /// Removes redundant address calculations.
292 bool removeRedundantAddrCalc(MemOpMap &LEAs);
293
294 /// Replace debug value MI with a new debug value instruction using register
295 /// VReg with an appropriate offset and DIExpression to incorporate the
296 /// address displacement AddrDispShift. Return new debug value instruction.
297 MachineInstr *replaceDebugValue(MachineInstr &MI, Register OldReg,
298 Register NewReg, int64_t AddrDispShift);
299
300 /// Removes LEAs which calculate similar addresses.
301 bool removeRedundantLEAs(MemOpMap &LEAs);
302
303 DenseMap<const MachineInstr *, unsigned> InstrPos;
304
305 MachineRegisterInfo *MRI = nullptr;
306 const X86InstrInfo *TII = nullptr;
307 const X86RegisterInfo *TRI = nullptr;
308};
309
310} // end anonymous namespace
311
312char X86OptimizeLEAPass::ID = 0;
313
314FunctionPass *llvm::createX86OptimizeLEAs() { return new X86OptimizeLEAPass(); }
315INITIALIZE_PASS(X86OptimizeLEAPass, DEBUG_TYPE, "X86 optimize LEA pass", false,
316 false)
317
318int X86OptimizeLEAPass::calcInstrDist(const MachineInstr &First,
320 // Both instructions must be in the same basic block and they must be
321 // presented in InstrPos.
322 assert(Last.getParent() == First.getParent() &&
323 "Instructions are in different basic blocks");
324 assert(InstrPos.contains(&First) && InstrPos.contains(&Last) &&
325 "Instructions' positions are undefined");
326
327 return InstrPos[&Last] - InstrPos[&First];
328}
329
330// Find the best LEA instruction in the List to replace address recalculation in
331// MI. Such LEA must meet these requirements:
332// 1) The address calculated by the LEA differs only by the displacement from
333// the address used in MI.
334// 2) The register class of the definition of the LEA is compatible with the
335// register class of the address base register of MI.
336// 3) Displacement of the new memory operand should fit in 1 byte if possible.
337// 4) The LEA should be as close to MI as possible, and prior to it if
338// possible.
339bool X86OptimizeLEAPass::chooseBestLEA(
341 MachineInstr *&BestLEA, int64_t &AddrDispShift, int &Dist) {
342 const MCInstrDesc &Desc = MI.getDesc();
343 int MemOpNo = X86II::getMemoryOperandNo(Desc.TSFlags) +
345
346 BestLEA = nullptr;
347
348 // Loop over all LEA instructions.
349 for (auto *DefMI : List) {
350 // Get new address displacement.
351 int64_t AddrDispShiftTemp = getAddrDispShift(MI, MemOpNo, *DefMI, 1);
352
353 // Make sure address displacement fits 4 bytes.
354 if (!isInt<32>(AddrDispShiftTemp))
355 continue;
356
357 // Check that LEA def register can be used as MI address base. Some
358 // instructions can use a limited set of registers as address base, for
359 // example MOV8mr_NOREX. We could constrain the register class of the LEA
360 // def to suit MI, however since this case is very rare and hard to
361 // reproduce in a test it's just more reliable to skip the LEA.
362 if (TII->getRegClass(Desc, MemOpNo + X86::AddrBaseReg, TRI) !=
363 MRI->getRegClass(DefMI->getOperand(0).getReg()))
364 continue;
365
366 // Choose the closest LEA instruction from the list, prior to MI if
367 // possible. Note that we took into account resulting address displacement
368 // as well. Also note that the list is sorted by the order in which the LEAs
369 // occur, so the break condition is pretty simple.
370 int DistTemp = calcInstrDist(*DefMI, MI);
371 assert(DistTemp != 0 &&
372 "The distance between two different instructions cannot be zero");
373 if (DistTemp > 0 || BestLEA == nullptr) {
374 // Do not update return LEA, if the current one provides a displacement
375 // which fits in 1 byte, while the new candidate does not.
376 if (BestLEA != nullptr && !isInt<8>(AddrDispShiftTemp) &&
377 isInt<8>(AddrDispShift))
378 continue;
379
380 BestLEA = DefMI;
381 AddrDispShift = AddrDispShiftTemp;
382 Dist = DistTemp;
383 }
384
385 // FIXME: Maybe we should not always stop at the first LEA after MI.
386 if (DistTemp < 0)
387 break;
388 }
389
390 return BestLEA != nullptr;
391}
392
393// Get the difference between the addresses' displacements of the two
394// instructions \p MI1 and \p MI2. The numbers of the first memory operands are
395// passed through \p N1 and \p N2.
396int64_t X86OptimizeLEAPass::getAddrDispShift(const MachineInstr &MI1,
397 unsigned N1,
398 const MachineInstr &MI2,
399 unsigned N2) const {
400 const MachineOperand &Op1 = MI1.getOperand(N1 + X86::AddrDisp);
401 const MachineOperand &Op2 = MI2.getOperand(N2 + X86::AddrDisp);
402
403 assert(isSimilarDispOp(Op1, Op2) &&
404 "Address displacement operands are not compatible");
405
406 // After the assert above we can be sure that both operands are of the same
407 // valid type and use the same symbol/index/address, thus displacement shift
408 // calculation is rather simple.
409 if (Op1.isJTI())
410 return 0;
411 return Op1.isImm() ? Op1.getImm() - Op2.getImm()
412 : Op1.getOffset() - Op2.getOffset();
413}
414
415// Check that the Last LEA can be replaced by the First LEA. To be so,
416// these requirements must be met:
417// 1) Addresses calculated by LEAs differ only by displacement.
418// 2) Def registers of LEAs belong to the same class.
419// 3) All uses of the Last LEA def register are replaceable, thus the
420// register is used only as address base.
421bool X86OptimizeLEAPass::isReplaceable(const MachineInstr &First,
422 const MachineInstr &Last,
423 int64_t &AddrDispShift) const {
424 assert(isLEA(First) && isLEA(Last) &&
425 "The function works only with LEA instructions");
426
427 // Make sure that LEA def registers belong to the same class. There may be
428 // instructions (like MOV8mr_NOREX) which allow a limited set of registers to
429 // be used as their operands, so we must be sure that replacing one LEA
430 // with another won't lead to putting a wrong register in the instruction.
431 if (MRI->getRegClass(First.getOperand(0).getReg()) !=
432 MRI->getRegClass(Last.getOperand(0).getReg()))
433 return false;
434
435 // Get new address displacement.
436 AddrDispShift = getAddrDispShift(Last, 1, First, 1);
437
438 // Loop over all uses of the Last LEA to check that its def register is
439 // used only as address base for memory accesses. If so, it can be
440 // replaced, otherwise - no.
441 for (auto &MO : MRI->use_nodbg_operands(Last.getOperand(0).getReg())) {
442 MachineInstr &MI = *MO.getParent();
443
444 // Get the number of the first memory operand.
445 const MCInstrDesc &Desc = MI.getDesc();
446 int MemOpNo = X86II::getMemoryOperandNo(Desc.TSFlags);
447
448 // If the use instruction has no memory operand - the LEA is not
449 // replaceable.
450 if (MemOpNo < 0)
451 return false;
452
453 MemOpNo += X86II::getOperandBias(Desc);
454
455 // If the address base of the use instruction is not the LEA def register -
456 // the LEA is not replaceable.
457 if (!isIdenticalOp(MI.getOperand(MemOpNo + X86::AddrBaseReg), MO))
458 return false;
459
460 // If the LEA def register is used as any other operand of the use
461 // instruction - the LEA is not replaceable.
462 for (unsigned i = 0; i < MI.getNumOperands(); i++)
463 if (i != (unsigned)(MemOpNo + X86::AddrBaseReg) &&
464 isIdenticalOp(MI.getOperand(i), MO))
465 return false;
466
467 // Check that the new address displacement will fit 4 bytes.
468 if (MI.getOperand(MemOpNo + X86::AddrDisp).isImm() &&
469 !isInt<32>(MI.getOperand(MemOpNo + X86::AddrDisp).getImm() +
470 AddrDispShift))
471 return false;
472 }
473
474 return true;
475}
476
477void X86OptimizeLEAPass::findLEAs(const MachineBasicBlock &MBB,
478 MemOpMap &LEAs) {
479 unsigned Pos = 0;
480 for (auto &MI : MBB) {
481 // Assign the position number to the instruction. Note that we are going to
482 // move some instructions during the optimization however there will never
483 // be a need to move two instructions before any selected instruction. So to
484 // avoid multiple positions' updates during moves we just increase position
485 // counter by two leaving a free space for instructions which will be moved.
486 InstrPos[&MI] = Pos += 2;
487
488 if (isLEA(MI))
489 LEAs[getMemOpKey(MI, 1)].push_back(const_cast<MachineInstr *>(&MI));
490 }
491}
492
493// Try to find load and store instructions which recalculate addresses already
494// calculated by some LEA and replace their memory operands with its def
495// register.
496bool X86OptimizeLEAPass::removeRedundantAddrCalc(MemOpMap &LEAs) {
497 bool Changed = false;
498
499 assert(!LEAs.empty());
500 MachineBasicBlock *MBB = (*LEAs.begin()->second.begin())->getParent();
501
502 // Process all instructions in basic block.
503 for (MachineInstr &MI : llvm::make_early_inc_range(*MBB)) {
504 // Instruction must be load or store.
505 if (!MI.mayLoadOrStore())
506 continue;
507
508 // Get the number of the first memory operand.
509 const MCInstrDesc &Desc = MI.getDesc();
510 int MemOpNo = X86II::getMemoryOperandNo(Desc.TSFlags);
511
512 // If instruction has no memory operand - skip it.
513 if (MemOpNo < 0)
514 continue;
515
516 MemOpNo += X86II::getOperandBias(Desc);
517
518 // Do not call chooseBestLEA if there was no matching LEA
519 auto Insns = LEAs.find(getMemOpKey(MI, MemOpNo));
520 if (Insns == LEAs.end())
521 continue;
522
523 // Get the best LEA instruction to replace address calculation.
524 MachineInstr *DefMI;
525 int64_t AddrDispShift;
526 int Dist;
527 if (!chooseBestLEA(Insns->second, MI, DefMI, AddrDispShift, Dist))
528 continue;
529
530 // If LEA occurs before current instruction, we can freely replace
531 // the instruction. If LEA occurs after, we can lift LEA above the
532 // instruction and this way to be able to replace it. Since LEA and the
533 // instruction have similar memory operands (thus, the same def
534 // instructions for these operands), we can always do that, without
535 // worries of using registers before their defs.
536 if (Dist < 0) {
539 InstrPos[DefMI] = InstrPos[&MI] - 1;
540
541 // Make sure the instructions' position numbers are sane.
542 assert(((InstrPos[DefMI] == 1 &&
544 InstrPos[DefMI] >
545 InstrPos[&*std::prev(MachineBasicBlock::iterator(DefMI))]) &&
546 "Instruction positioning is broken");
547 }
548
549 // Since we can possibly extend register lifetime, clear kill flags.
550 MRI->clearKillFlags(DefMI->getOperand(0).getReg());
551
552 ++NumSubstLEAs;
553 LLVM_DEBUG(dbgs() << "OptimizeLEAs: Candidate to replace: "; MI.dump(););
554
555 // Change instruction operands.
556 MI.getOperand(MemOpNo + X86::AddrBaseReg)
557 .ChangeToRegister(DefMI->getOperand(0).getReg(), false);
558 MI.getOperand(MemOpNo + X86::AddrScaleAmt).ChangeToImmediate(1);
559 MI.getOperand(MemOpNo + X86::AddrIndexReg)
560 .ChangeToRegister(X86::NoRegister, false);
561 MI.getOperand(MemOpNo + X86::AddrDisp).ChangeToImmediate(AddrDispShift);
562 MI.getOperand(MemOpNo + X86::AddrSegmentReg)
563 .ChangeToRegister(X86::NoRegister, false);
564
565 LLVM_DEBUG(dbgs() << "OptimizeLEAs: Replaced by: "; MI.dump(););
566
567 Changed = true;
568 }
569
570 return Changed;
571}
572
573MachineInstr *X86OptimizeLEAPass::replaceDebugValue(MachineInstr &MI,
574 Register OldReg,
575 Register NewReg,
576 int64_t AddrDispShift) {
577 const DIExpression *Expr = MI.getDebugExpression();
578 if (AddrDispShift != 0) {
579 if (MI.isNonListDebugValue()) {
580 Expr =
582 } else {
583 // Update the Expression, appending an offset of `AddrDispShift` to the
584 // Op corresponding to `OldReg`.
586 DIExpression::appendOffset(Ops, AddrDispShift);
587 for (MachineOperand &Op : MI.getDebugOperandsForReg(OldReg)) {
588 unsigned OpIdx = MI.getDebugOperandIndex(&Op);
590 }
591 }
592 }
593
594 // Replace DBG_VALUE instruction with modified version.
595 MachineBasicBlock *MBB = MI.getParent();
596 DebugLoc DL = MI.getDebugLoc();
597 bool IsIndirect = MI.isIndirectDebugValue();
598 const MDNode *Var = MI.getDebugVariable();
599 unsigned Opcode = MI.isNonListDebugValue() ? TargetOpcode::DBG_VALUE
600 : TargetOpcode::DBG_VALUE_LIST;
601 if (IsIndirect)
602 assert(MI.getDebugOffset().getImm() == 0 &&
603 "DBG_VALUE with nonzero offset");
605 // If we encounter an operand using the old register, replace it with an
606 // operand that uses the new register; otherwise keep the old operand.
607 auto replaceOldReg = [OldReg, NewReg](const MachineOperand &Op) {
608 if (Op.isReg() && Op.getReg() == OldReg)
609 return MachineOperand::CreateReg(NewReg, false, false, false, false,
610 false, false, false, false, false,
611 /*IsRenamable*/ true);
612 return Op;
613 };
614 for (const MachineOperand &Op : MI.debug_operands())
615 NewOps.push_back(replaceOldReg(Op));
616 return BuildMI(*MBB, MBB->erase(&MI), DL, TII->get(Opcode), IsIndirect,
617 NewOps, Var, Expr);
618}
619
620// Try to find similar LEAs in the list and replace one with another.
621bool X86OptimizeLEAPass::removeRedundantLEAs(MemOpMap &LEAs) {
622 bool Changed = false;
623
624 // Loop over all entries in the table.
625 for (auto &E : LEAs) {
626 auto &List = E.second;
627
628 // Loop over all LEA pairs.
629 auto I1 = List.begin();
630 while (I1 != List.end()) {
631 MachineInstr &First = **I1;
632 auto I2 = std::next(I1);
633 while (I2 != List.end()) {
634 MachineInstr &Last = **I2;
635 int64_t AddrDispShift;
636
637 // LEAs should be in occurrence order in the list, so we can freely
638 // replace later LEAs with earlier ones.
639 assert(calcInstrDist(First, Last) > 0 &&
640 "LEAs must be in occurrence order in the list");
641
642 // Check that the Last LEA instruction can be replaced by the First.
643 if (!isReplaceable(First, Last, AddrDispShift)) {
644 ++I2;
645 continue;
646 }
647
648 // Loop over all uses of the Last LEA and update their operands. Note
649 // that the correctness of this has already been checked in the
650 // isReplaceable function.
651 Register FirstVReg = First.getOperand(0).getReg();
652 Register LastVReg = Last.getOperand(0).getReg();
653 // We use MRI->use_empty here instead of the combination of
654 // llvm::make_early_inc_range and MRI->use_operands because we could
655 // replace two or more uses in a debug instruction in one iteration, and
656 // that would deeply confuse llvm::make_early_inc_range.
657 while (!MRI->use_empty(LastVReg)) {
658 MachineOperand &MO = *MRI->use_begin(LastVReg);
659 MachineInstr &MI = *MO.getParent();
660
661 if (MI.isDebugValue()) {
662 // Replace DBG_VALUE instruction with modified version using the
663 // register from the replacing LEA and the address displacement
664 // between the LEA instructions.
665 replaceDebugValue(MI, LastVReg, FirstVReg, AddrDispShift);
666 continue;
667 }
668
669 // Get the number of the first memory operand.
670 const MCInstrDesc &Desc = MI.getDesc();
671 int MemOpNo =
674
675 // Update address base.
676 MO.setReg(FirstVReg);
677
678 // Update address disp.
679 MachineOperand &Op = MI.getOperand(MemOpNo + X86::AddrDisp);
680 if (Op.isImm())
681 Op.setImm(Op.getImm() + AddrDispShift);
682 else if (!Op.isJTI())
683 Op.setOffset(Op.getOffset() + AddrDispShift);
684 }
685
686 // Since we can possibly extend register lifetime, clear kill flags.
687 MRI->clearKillFlags(FirstVReg);
688
689 ++NumRedundantLEAs;
690 LLVM_DEBUG(dbgs() << "OptimizeLEAs: Remove redundant LEA: ";
691 Last.dump(););
692
693 // By this moment, all of the Last LEA's uses must be replaced. So we
694 // can freely remove it.
695 assert(MRI->use_empty(LastVReg) &&
696 "The LEA's def register must have no uses");
697 Last.eraseFromParent();
698
699 // Erase removed LEA from the list.
700 I2 = List.erase(I2);
701
702 Changed = true;
703 }
704 ++I1;
705 }
706 }
707
708 return Changed;
709}
710
711bool X86OptimizeLEAPass::runOnMachineFunction(MachineFunction &MF) {
712 bool Changed = false;
713
714 if (DisableX86LEAOpt || skipFunction(MF.getFunction()))
715 return false;
716
717 MRI = &MF.getRegInfo();
718 TII = MF.getSubtarget<X86Subtarget>().getInstrInfo();
719 TRI = MF.getSubtarget<X86Subtarget>().getRegisterInfo();
720 auto *PSI =
721 &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
722 auto *MBFI = (PSI && PSI->hasProfileSummary()) ?
723 &getAnalysis<LazyMachineBlockFrequencyInfoPass>().getBFI() :
724 nullptr;
725
726 // Process all basic blocks.
727 for (auto &MBB : MF) {
728 MemOpMap LEAs;
729 InstrPos.clear();
730
731 // Find all LEA instructions in basic block.
732 findLEAs(MBB, LEAs);
733
734 // If current basic block has no LEAs, move on to the next one.
735 if (LEAs.empty())
736 continue;
737
738 // Remove redundant LEA instructions.
739 Changed |= removeRedundantLEAs(LEAs);
740
741 // Remove redundant address calculations. Do it only for -Os/-Oz since only
742 // a code size gain is expected from this part of the pass.
743 if (llvm::shouldOptimizeForSize(&MBB, PSI, MBFI))
744 Changed |= removeRedundantAddrCalc(LEAs);
745 }
746
747 return Changed;
748}
unsigned const MachineRegisterInfo * MRI
MachineInstrBuilder MachineInstrBuilder & DefMI
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
aarch64 promote const
MachineBasicBlock & MBB
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
This file defines DenseMapInfo traits for DenseMap.
This file defines the DenseMap class.
#define DEBUG_TYPE
const HexagonInstrInfo * TII
IRTranslator LLVM IR MI
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
===- LazyMachineBlockFrequencyInfo.h - Lazy Block Frequency -*- C++ -*–===//
mir Rename Register Operands
Register const TargetRegisterInfo * TRI
Promote Memory to Register
Definition Mem2Reg.cpp:110
MachineInstr unsigned OpIdx
#define INITIALIZE_PASS(passName, arg, name, cfg, analysis)
Definition PassSupport.h:56
This file defines the SmallVector class.
This file defines the 'Statistic' class, which is designed to be an easy way to expose various metric...
#define STATISTIC(VARNAME, DESC)
Definition Statistic.h:167
#define LLVM_DEBUG(...)
Definition Debug.h:114
static bool isLEA(unsigned Opcode)
static cl::opt< bool > DisableX86LEAOpt("disable-x86-lea-opt", cl::Hidden, cl::desc("X86: Disable LEA optimizations."), cl::init(false))
static bool isLEA(const MachineInstr &MI)
Returns true if the instruction is LEA.
static bool isValidDispOp(const MachineOperand &MO)
static MemOpKey getMemOpKey(const MachineInstr &MI, unsigned N)
Returns a hash table key based on memory operands of MI.
static bool isSimilarDispOp(const MachineOperand &MO1, const MachineOperand &MO2)
Returns true if two address displacement operands are of the same type and use the same symbol/index/...
static bool isIdenticalOp(const MachineOperand &MO1, const MachineOperand &MO2)
Returns true if two machine operands are identical and they are not physical registers.
AnalysisUsage & addRequired()
static LLVM_ABI void appendOffset(SmallVectorImpl< uint64_t > &Ops, int64_t Offset)
Append Ops with operations to apply the Offset.
static LLVM_ABI DIExpression * appendOpsToArg(const DIExpression *Expr, ArrayRef< uint64_t > Ops, unsigned ArgNo, bool StackValue=false)
Create a copy of Expr by appending the given list of Ops to each instance of the operand DW_OP_LLVM_a...
static LLVM_ABI DIExpression * prepend(const DIExpression *Expr, uint8_t Flags, int64_t Offset=0)
Prepend DIExpr with a deref and offset operation and optionally turn it into a stack value or/and an ...
FunctionPass class - This class is used to implement most global optimizations.
Definition Pass.h:314
LLVM_ABI instr_iterator insert(instr_iterator I, MachineInstr *M)
Insert MI into the instruction list before I, possibly inside a bundle.
const MachineFunction * getParent() const
Return the MachineFunction containing this basic block.
LLVM_ABI instr_iterator erase(instr_iterator I)
Remove an instruction from the instruction list and delete it.
MachineInstrBundleIterator< MachineInstr > iterator
MachineFunctionPass - This class adapts the FunctionPass interface to allow convenient creation of pa...
void getAnalysisUsage(AnalysisUsage &AU) const override
getAnalysisUsage - Subclasses that override getAnalysisUsage must call this.
const TargetSubtargetInfo & getSubtarget() const
getSubtarget - Return the subtarget for which this machine code is being compiled.
MachineRegisterInfo & getRegInfo()
getRegInfo - Return information about the registers currently in use.
Function & getFunction()
Return the LLVM function that this machine code represents.
Representation of each machine instruction.
LLVM_ABI MachineInstr * removeFromParent()
Unlink 'this' from the containing basic block, and return it without deleting it.
const MachineOperand & getOperand(unsigned i) const
MachineOperand class - Representation of each machine instruction operand.
const GlobalValue * getGlobal() const
int64_t getImm() const
bool isReg() const
isReg - Tests if this is a MO_Register operand.
MachineBasicBlock * getMBB() const
bool isCPI() const
isCPI - Tests if this is a MO_ConstantPoolIndex operand.
LLVM_ABI void setReg(Register Reg)
Change the register this operand corresponds to.
bool isImm() const
isImm - Tests if this is a MO_Immediate operand.
bool isSymbol() const
isSymbol - Tests if this is a MO_ExternalSymbol operand.
bool isJTI() const
isJTI - Tests if this is a MO_JumpTableIndex operand.
const BlockAddress * getBlockAddress() const
MachineInstr * getParent()
getParent - Return the instruction that this operand belongs to.
bool isGlobal() const
isGlobal - Tests if this is a MO_GlobalAddress operand.
MachineOperandType getType() const
getType - Returns the MachineOperandType for this operand.
const char * getSymbolName() const
bool isBlockAddress() const
isBlockAddress - Tests if this is a MO_BlockAddress operand.
Register getReg() const
getReg - Returns the register number.
LLVM_ABI bool isIdenticalTo(const MachineOperand &Other) const
Returns true if this operand is identical to the specified operand except for liveness related flags ...
MCSymbol * getMCSymbol() const
@ MO_Immediate
Immediate operand.
@ MO_ConstantPoolIndex
Address of indexed Constant in Constant Pool.
@ MO_MCSymbol
MCSymbol reference (for debug/eh info)
@ MO_GlobalAddress
Address of a global value.
@ MO_BlockAddress
Address of a basic block.
@ MO_MachineBasicBlock
MachineBasicBlock reference.
@ MO_ExternalSymbol
Name of external global symbol.
@ MO_JumpTableIndex
Address of indexed Jump Table for switch.
static MachineOperand CreateReg(Register Reg, bool isDef, bool isImp=false, bool isKill=false, bool isDead=false, bool isUndef=false, bool isEarlyClobber=false, unsigned SubReg=0, bool isDebug=false, bool isInternalRead=false, bool isRenamable=false)
int64_t getOffset() const
Return the offset from the symbol in this operand.
bool isMBB() const
isMBB - Tests if this is a MO_MachineBasicBlock operand.
void dump() const
Definition Pass.cpp:146
constexpr bool isPhysical() const
Return true if the specified register number is in the physical register namespace.
Definition Register.h:78
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
void push_back(const T &Elt)
An opaque object representing a hash code.
Definition Hashing.h:76
Changed
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
int getMemoryOperandNo(uint64_t TSFlags)
unsigned getOperandBias(const MCInstrDesc &Desc)
Compute whether all of the def operands are repeated in the uses and therefore should be skipped.
initializer< Ty > init(const Ty &Val)
This is an optimization pass for GlobalISel generic memory operations.
MachineInstrBuilder BuildMI(MachineFunction &MF, const MIMetadata &MIMD, const MCInstrDesc &MCID)
Builder interface. Specify how to create the initial instruction itself.
constexpr bool isInt(int64_t x)
Checks if an integer fits into the given bit width.
Definition MathExtras.h:174
LLVM_ABI bool shouldOptimizeForSize(const MachineFunction *MF, ProfileSummaryInfo *PSI, const MachineBlockFrequencyInfo *BFI, PGSOQueryType QueryType=PGSOQueryType::Other)
Returns true if machine function MF is suggested to be size-optimized based on the profile.
iterator_range< early_inc_iterator_impl< detail::IterOfRange< RangeT > > > make_early_inc_range(RangeT &&Range)
Make a range that does early increment to allow mutation of the underlying range without disrupting i...
Definition STLExtras.h:626
bool operator==(const AddressRangeValuePair &LHS, const AddressRangeValuePair &RHS)
Op::Description Desc
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition Debug.cpp:207
class LLVM_GSL_OWNER SmallVector
Forward declaration of SmallVector so that calculateSmallVectorDefaultInlinedElements can reference s...
@ Other
Any other memory.
Definition ModRef.h:68
@ First
Helpers to iterate all locations in the MemoryEffectsBase class.
Definition ModRef.h:71
DWARFExpression::Operation Op
FunctionPass * createX86OptimizeLEAs()
Return a pass that removes redundant LEA instructions and redundant address recalculations.
hash_code hash_combine(const Ts &...args)
Combine values into a single hash_code.
Definition Hashing.h:591
#define N
static unsigned getHashValue(const MemOpKey &Val)
DenseMapInfo< const MachineOperand * > PtrInfo
static bool isEqual(const MemOpKey &LHS, const MemOpKey &RHS)
An information struct used to provide DenseMap with the various necessary components for a given valu...