numpy.bartlett#

numpy.bartlett(M)[source]#

Return the Bartlett window.

The Bartlett window is very similar to a triangular window, except that the end points are at zero. It is often used in signal processing for tapering a signal, without generating too much ripple in the frequency domain.

Parameters:
Mint

Number of points in the output window. If zero or less, an empty array is returned.

Returns:
outarray

The triangular window, with the maximum value normalized to one (the value one appears only if the number of samples is odd), with the first and last samples equal to zero.

Notes

The Bartlett window is defined as

\[w(n) = \frac{2}{M-1} \left( \frac{M-1}{2} - \left|n - \frac{M-1}{2}\right| \right)\]

Most references to the Bartlett window come from the signal processing literature, where it is used as one of many windowing functions for smoothing values. Note that convolution with this window produces linear interpolation. It is also known as an apodization (which means โ€œremoving the footโ€, i.e. smoothing discontinuities at the beginning and end of the sampled signal) or tapering function. The Fourier transform of the Bartlett window is the product of two sinc functions. Note the excellent discussion in Kanasewich [2].

References

[1]

M.S. Bartlett, โ€œPeriodogram Analysis and Continuous Spectraโ€, Biometrika 37, 1-16, 1950.

[2]

E.R. Kanasewich, โ€œTime Sequence Analysis in Geophysicsโ€, The University of Alberta Press, 1975, pp. 109-110.

[3]

A.V. Oppenheim and R.W. Schafer, โ€œDiscrete-Time Signal Processingโ€, Prentice-Hall, 1999, pp. 468-471.

[4]

Wikipedia, โ€œWindow functionโ€, https://en.wikipedia.org/wiki/Window_function

[5]

W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling, โ€œNumerical Recipesโ€, Cambridge University Press, 1986, page 429.

Examples

>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> np.bartlett(12)
array([ 0.        ,  0.18181818,  0.36363636,  0.54545455,  0.72727273, # may vary
        0.90909091,  0.90909091,  0.72727273,  0.54545455,  0.36363636,
        0.18181818,  0.        ])

Plot the window and its frequency response (requires SciPy and matplotlib).

import matplotlib.pyplot as plt
from numpy.fft import fft, fftshift
window = np.bartlett(51)
plt.plot(window)
plt.title("Bartlett window")
plt.ylabel("Amplitude")
plt.xlabel("Sample")
plt.show()
../../_images/numpy-bartlett-1_00_00.png
plt.figure()
A = fft(window, 2048) / 25.5
mag = np.abs(fftshift(A))
freq = np.linspace(-0.5, 0.5, len(A))
with np.errstate(divide='ignore', invalid='ignore'):
    response = 20 * np.log10(mag)
response = np.clip(response, -100, 100)
plt.plot(freq, response)
plt.title("Frequency response of Bartlett window")
plt.ylabel("Magnitude [dB]")
plt.xlabel("Normalized frequency [cycles per sample]")
plt.axis('tight')
plt.show()
../../_images/numpy-bartlett-1_01_00.png