Skip to main content

OpenInference Bedrock Instrumentation

Project description

OpenInference AWS Bedrock Instrumentation

Python autoinstrumentation library for AWS Bedrock calls made using boto3.

This package implements OpenInference tracing for invoke_model, invoke_agent and converse calls made using the boto3 bedrock-runtime and bedrock-agent-runtime clients. These traces are fully OpenTelemetry compatible and can be sent to an OpenTelemetry collector for viewing, such as Arize phoenix.

pypi

[!NOTE]
The Converse API was introduced in botocore v1.34.116. Please use v1.34.116 or above to utilize converse.

Supported Models

Find the list of Bedrock-supported models and their IDs here. Future testing is planned for additional models.

Model Supported Methods
Anthropic Claude 2.0 converse, invoke
Anthropic Claude 2.1 converse, invoke
Anthropic Claude 3 Sonnet 1.0 converse
Anthropic Claude 3.5 Sonnet converse
Anthropic Claude 3 Haiku converse
Meta Llama 3 8b Instruct converse
Meta Llama 3 70b Instruct converse
Mistral AI Mistral 7B Instruct converse
Mistral AI Mixtral 8X7B Instruct converse
Mistral AI Mistral Large converse
Mistral AI Mistral Small converse

Installation

pip install openinference-instrumentation-bedrock

Quickstart

[!IMPORTANT]
OpenInference for AWS Bedrock supports both invoke_model and converse. For models that use the Messages API, such as Anthropic Claude 3 and Anthropic Claude 3.5, use the Converse API instead.

In a notebook environment (jupyter, colab, etc.) install openinference-instrumentation-bedrock, arize-phoenix and boto3.

You can test out this quickstart guide in Google Colab!

pip install openinference-instrumentation-bedrock arize-phoenix boto3

Ensure that boto3 is configured with AWS credentials.

First, import dependencies required to autoinstrument AWS Bedrock and set up phoenix as an collector for OpenInference traces.

from urllib.parse import urljoin

import boto3
import phoenix as px

from openinference.instrumentation.bedrock import BedrockInstrumentor
from opentelemetry import trace as trace_api
from opentelemetry.exporter.otlp.proto.http.trace_exporter import OTLPSpanExporter
from opentelemetry.sdk import trace as trace_sdk
from opentelemetry.sdk.trace.export import SimpleSpanProcessor

Next, we'll start a phoenix server and set it as a collector.

px.launch_app()
session_url = px.active_session().url
phoenix_otlp_endpoint = urljoin(session_url, "v1/traces")
phoenix_exporter = OTLPSpanExporter(endpoint=phoenix_otlp_endpoint)
tracer_provider = trace_sdk.TracerProvider()
tracer_provider.add_span_processor(SimpleSpanProcessor(span_exporter=phoenix_exporter))
trace_api.set_tracer_provider(tracer_provider=tracer_provider)

Instrumenting boto3 is simple:

BedrockInstrumentor().instrument()

Now, all calls to invoke_model are instrumented and can be viewed in the phoenix UI.

session = boto3.session.Session()
client = session.client("bedrock-runtime")
prompt = b'{"prompt": "Human: Hello there, how are you? Assistant:", "max_tokens_to_sample": 1024}'
response = client.invoke_model(modelId="anthropic.claude-v2", body=prompt)
response_body = json.loads(response.get("body").read())
print(response_body["completion"])

Alternatively, all calls to converse are instrumented and can be viewed in the phoenix UI.

session = boto3.session.Session()
client = session.client("bedrock-runtime")

message1 = {
            "role": "user",
            "content": [{"text": "Create a list of 3 pop songs."}]
}
message2 = {
        "role": "user",
        "content": [{"text": "Make sure the songs are by artists from the United Kingdom."}]
}
messages = []

messages.append(message1)
response = client.converse(
    modelId="anthropic.claude-3-5-sonnet-20240620-v1:0",
    messages=messages
)
out = response["output"]["message"]
messages.append(out)
print(out.get("content")[-1].get("text"))

messages.append(message2)
response = client.converse(
    modelId="anthropic.claude-v2:1",
    messages=messages
)
out = response['output']['message']
print(out.get("content")[-1].get("text"))

All calls to invoke_agent are instrumented and can be viewed in the phoenix UI. You can enable the agent traces by passing enableTrace=True argument.

session = boto3.session.Session()
client = session.client("bedrock-agent-runtime")
agent_id = '<AgentId>'
agent_alias_id = '<AgentAliasId>'
session_id = f"default-session1_{int(time.time())}"

attributes = dict(
    inputText="When is a good time to visit the Taj Mahal?",
    agentId=agent_id,
    agentAliasId=agent_alias_id,
    sessionId=session_id,
    enableTrace=True
)
response = client.invoke_agent(**attributes)

for idx, event in enumerate(response['completion']):
    if 'chunk' in event:
        chunk_data = event['chunk']
        if 'bytes' in chunk_data:
            output_text = chunk_data['bytes'].decode('utf8')
            print(output_text)
    elif 'trace' in event:
        print(event['trace'])

More Info

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

openinference_instrumentation_bedrock-0.1.27.tar.gz (176.8 kB view details)

Uploaded Source

Built Distribution

File details

Details for the file openinference_instrumentation_bedrock-0.1.27.tar.gz.

File metadata

File hashes

Hashes for openinference_instrumentation_bedrock-0.1.27.tar.gz
Algorithm Hash digest
SHA256 7cdfb2dddfb3fc574c154da31d376c5b1d395424de959177fdafa64c2cfdf558
MD5 c2c6053f48040658abdac0286e23f277
BLAKE2b-256 c60343fe4409ded8c7ba72f7d24a55e2e051156becea32be913e98b7b40f55ee

See more details on using hashes here.

File details

Details for the file openinference_instrumentation_bedrock-0.1.27-py3-none-any.whl.

File metadata

File hashes

Hashes for openinference_instrumentation_bedrock-0.1.27-py3-none-any.whl
Algorithm Hash digest
SHA256 89a95479628480012442f7470d5fb7022ee66cdeba34898b3a19bd38087c92bd
MD5 db0bcfa30a9924327124a4c476c5d825
BLAKE2b-256 554a6332adea5cbd9132397da0b1f95feae2db063a30c3a4b2716cda3066290a

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page