Skip to main content

OpenInference OpenAI Instrumentation

Project description

OpenInference OpenAI Instrumentation

pypi

Python auto-instrumentation library for OpenAI's python SDK.

The traces emitted by this instrumentation are fully OpenTelemetry compatible and can be sent to an OpenTelemetry collector for viewing, such as arize-phoenix

Installation

pip install openinference-instrumentation-openai

Quickstart

In this example we will instrument a small program that uses OpenAI and observe the traces via arize-phoenix.

Install packages.

pip install openinference-instrumentation-openai "openai>=1.26" arize-phoenix opentelemetry-sdk opentelemetry-exporter-otlp

Start the phoenix server so that it is ready to collect traces. The Phoenix server runs entirely on your machine and does not send data over the internet.

python -m phoenix.server.main serve

In a python file, setup the OpenAIInstrumentor and configure the tracer to send traces to Phoenix.

import openai
from openinference.instrumentation.openai import OpenAIInstrumentor
from opentelemetry.exporter.otlp.proto.http.trace_exporter import OTLPSpanExporter
from opentelemetry.sdk import trace as trace_sdk
from opentelemetry.sdk.trace.export import ConsoleSpanExporter, SimpleSpanProcessor

endpoint = "http://127.0.0.1:6006/v1/traces"
tracer_provider = trace_sdk.TracerProvider()
tracer_provider.add_span_processor(SimpleSpanProcessor(OTLPSpanExporter(endpoint)))
# Optionally, you can also print the spans to the console.
tracer_provider.add_span_processor(SimpleSpanProcessor(ConsoleSpanExporter()))

OpenAIInstrumentor().instrument(tracer_provider=tracer_provider)


if __name__ == "__main__":
    client = openai.OpenAI()
    response = client.chat.completions.create(
        model="gpt-3.5-turbo",
        messages=[{"role": "user", "content": "Write a haiku."}],
        max_tokens=20,
        stream=True,
        stream_options={"include_usage": True},
    )
    for chunk in response:
        if chunk.choices and (content := chunk.choices[0].delta.content):
            print(content, end="")

Since we are using OpenAI, we must set the OPENAI_API_KEY environment variable to authenticate with the OpenAI API.

export OPENAI_API_KEY=your-api-key

Now simply run the python file and observe the traces in Phoenix.

python your_file.py

FAQ

Q: How to get token counts when streaming?

A: To get token counts when streaming, install openai>=1.26 and set stream_options={"include_usage": True} when calling create. See the example shown above. For more info, see here.

More Info

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

Built Distribution

File details

Details for the file openinference_instrumentation_openai-0.1.32.tar.gz.

File metadata

File hashes

Hashes for openinference_instrumentation_openai-0.1.32.tar.gz
Algorithm Hash digest
SHA256 4e24fb0a97ae33c474b0897cccd95ed5c737a7076696fd4fc791704fc30484a4
MD5 3ec3e73ddb861045064951baa141af85
BLAKE2b-256 b488b64983fdfce44990dca65e1528b8cd3427ed21a74045960661266a6d4ec0

See more details on using hashes here.

File details

Details for the file openinference_instrumentation_openai-0.1.32-py3-none-any.whl.

File metadata

File hashes

Hashes for openinference_instrumentation_openai-0.1.32-py3-none-any.whl
Algorithm Hash digest
SHA256 4776a5890f7c6472039131f86fdc5f722479fb7ffe796cc121c67c30572264f1
MD5 d1e01221f21de78b59fdeb585a38ae04
BLAKE2b-256 48c3905559f5dc45b4cb142e3d777e20ff42390ee244d161718385c9e94189c2

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page