Skip to main content

OpenInference PydanticAI Instrumentation

Project description

OpenInference PydanticAI

pypi

Python auto-instrumentation library for PydanticAI. These traces are fully OpenTelemetry compatible and can be sent to an OpenTelemetry collector for viewing, such as Arize Phoenix.

Installation

pip install openinference-instrumentation-pydantic-ai

Quickstart

This quickstart shows you how to instrument your PydanticAI agents.

Install required packages.

pip install pydantic-ai arize-phoenix opentelemetry-sdk opentelemetry-exporter-otlp

Start Phoenix in the background as a collector. By default, it listens on http://localhost:6006. You can visit the app via a browser at the same address. (Phoenix does not send data over the internet. It only operates locally on your machine.)

phoenix serve

Here's a simple example that demonstrates how to use PydanticAI with OpenInference instrumentation:

import os
from pydantic import BaseModel
from pydantic_ai import Agent
from pydantic_ai.models.instrumented import InstrumentationSettings
from pydantic_ai.models.openai import OpenAIModel
from pydantic_ai.providers.openai import OpenAIProvider
from opentelemetry import trace
from opentelemetry.exporter.otlp.proto.http.trace_exporter import OTLPSpanExporter
from opentelemetry.sdk.trace import TracerProvider
from openinference.instrumentation.pydantic_ai import OpenInferenceSpanProcessor
from opentelemetry.sdk.trace.export import SimpleSpanProcessor

# Set your OpenAI API key
os.environ["OPENAI_API_KEY"] = "YOUR_OPENAI_API_KEY"

# Set up the tracer provider
tracer_provider = TracerProvider()
trace.set_tracer_provider(tracer_provider)

# Add the OpenInference span processor
endpoint = "http://127.0.0.1:6006/v1/traces"
exporter = OTLPSpanExporter(endpoint=endpoint)
tracer_provider.add_span_processor(OpenInferenceSpanProcessor())
tracer_provider.add_span_processor(SimpleSpanProcessor(exporter))


# Define your Pydantic model
class LocationModel(BaseModel):
    city: str
    country: str

instrumentation = InstrumentationSettings(version=2)

# Create and configure the agent
model = OpenAIModel("gpt-4", provider=OpenAIProvider())
agent = Agent(model, output_type=LocationModel, instrument=instrumentation)

# Run the agent
result = agent.run_sync("The windy city in the US of A.")
print(result)

This example:

  1. Sets up OpenTelemetry tracing with Phoenix
  2. Defines a simple Pydantic model for location data
  3. Creates a PydanticAI agent with instrumentation enabled
  4. Runs a query and gets structured output

The traces will be visible in the Phoenix UI at http://localhost:6006.

More Info

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

Built Distribution

File details

Details for the file openinference_instrumentation_pydantic_ai-0.1.5.tar.gz.

File metadata

File hashes

Hashes for openinference_instrumentation_pydantic_ai-0.1.5.tar.gz
Algorithm Hash digest
SHA256 64f3ffbaa0d32c8c205ec96196f1da097705f586696d6981bae67e83617151c9
MD5 58640b0c70ca2a50b5160c2968793c99
BLAKE2b-256 9bc600b36bb4a460fb41fcca3afaea1e28f2d14df1bf27b5e08692dd0dfbb11f

See more details on using hashes here.

File details

Details for the file openinference_instrumentation_pydantic_ai-0.1.5-py3-none-any.whl.

File metadata

File hashes

Hashes for openinference_instrumentation_pydantic_ai-0.1.5-py3-none-any.whl
Algorithm Hash digest
SHA256 bf1037d831b564eba19992aea2c6948735e6c416afa979925c40ca540f443946
MD5 6a14e4a909f86356ca9fde939637edae
BLAKE2b-256 32c783a2f88f443b0b8c7e6f914c5bb3b8d29914df03e9d9936a1a43ede52d02

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page