scipy.special.eval_hermitenorm#
- scipy.special.eval_hermitenorm(n, x, out=None) = <ufunc 'eval_hermitenorm'>#
Evaluate probabilistβs (normalized) Hermite polynomial at a point.
Defined by
\[He_n(x) = (-1)^n e^{x^2/2} \frac{d^n}{dx^n} e^{-x^2/2};\]\(He_n\) is a polynomial of degree \(n\). See 22.11.8 in [AS] for details.
- Parameters:
- narray_like
Degree of the polynomial
- xarray_like
Points at which to evaluate the Hermite polynomial
- outndarray, optional
Optional output array for the function values
- Returns:
- Hescalar or ndarray
Values of the Hermite polynomial
See also
roots_hermitenorm
roots and quadrature weights of probabilistβs Hermite polynomials
hermitenorm
probabilistβs Hermite polynomial object
numpy.polynomial.hermite_e.HermiteE
Probabilistβs Hermite series
eval_hermite
evaluate physicistβs Hermite polynomials
References
[AS]Milton Abramowitz and Irene A. Stegun, eds. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. New York: Dover, 1972.