scipy.stats.dlaplace#

scipy.stats.dlaplace = <scipy.stats._discrete_distns.dlaplace_gen object>[source]#

A Laplacian discrete random variable.

As an instance of the rv_discrete class, dlaplace object inherits from it a collection of generic methods (see below for the full list), and completes them with details specific for this particular distribution.

Methods

rvs(a, loc=0, size=1, random_state=None)

Random variates.

pmf(k, a, loc=0)

Probability mass function.

logpmf(k, a, loc=0)

Log of the probability mass function.

cdf(k, a, loc=0)

Cumulative distribution function.

logcdf(k, a, loc=0)

Log of the cumulative distribution function.

sf(k, a, loc=0)

Survival function (also defined as 1 - cdf, but sf is sometimes more accurate).

logsf(k, a, loc=0)

Log of the survival function.

ppf(q, a, loc=0)

Percent point function (inverse of cdf β€” percentiles).

isf(q, a, loc=0)

Inverse survival function (inverse of sf).

stats(a, loc=0, moments=’mv’)

Mean(β€˜m’), variance(β€˜v’), skew(β€˜s’), and/or kurtosis(β€˜k’).

entropy(a, loc=0)

(Differential) entropy of the RV.

expect(func, args=(a,), loc=0, lb=None, ub=None, conditional=False)

Expected value of a function (of one argument) with respect to the distribution.

median(a, loc=0)

Median of the distribution.

mean(a, loc=0)

Mean of the distribution.

var(a, loc=0)

Variance of the distribution.

std(a, loc=0)

Standard deviation of the distribution.

interval(confidence, a, loc=0)

Confidence interval with equal areas around the median.

Notes

The probability mass function for dlaplace is:

\[f(k) = \tanh(a/2) \exp(-a |k|)\]

for integers \(k\) and \(a > 0\).

dlaplace takes \(a\) as shape parameter.

The probability mass function above is defined in the β€œstandardized” form. To shift distribution use the loc parameter. Specifically, dlaplace.pmf(k, a, loc) is identically equivalent to dlaplace.pmf(k - loc, a).

Examples

>>> import numpy as np
>>> from scipy.stats import dlaplace
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Get the support:

>>> a = 0.8
>>> lb, ub = dlaplace.support(a)

Calculate the first four moments:

>>> mean, var, skew, kurt = dlaplace.stats(a, moments='mvsk')

Display the probability mass function (pmf):

>>> x = np.arange(dlaplace.ppf(0.01, a),
...               dlaplace.ppf(0.99, a))
>>> ax.plot(x, dlaplace.pmf(x, a), 'bo', ms=8, label='dlaplace pmf')
>>> ax.vlines(x, 0, dlaplace.pmf(x, a), colors='b', lw=5, alpha=0.5)

Alternatively, the distribution object can be called (as a function) to fix the shape and location. This returns a β€œfrozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pmf:

>>> rv = dlaplace(a)
>>> ax.vlines(x, 0, rv.pmf(x), colors='k', linestyles='-', lw=1,
...         label='frozen pmf')
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
../../_images/scipy-stats-dlaplace-1_00_00.png

Check accuracy of cdf and ppf:

>>> prob = dlaplace.cdf(x, a)
>>> np.allclose(x, dlaplace.ppf(prob, a))
True

Generate random numbers:

>>> r = dlaplace.rvs(a, size=1000)