

Demystifying Al

Neural Network Optimization

Instructor: Pat Virtue

Neural Networks Inspired by actual human brain

Input Signal

Output

Signal

Image: https://en.wikipedia.org/wiki/Neuron

Neural Networks Simple single neuron example:

Selling my car

Neural Networks

Many layers of neurons, millions of parameters

Output Signal Input Signal **CAT** TREE CAR

Neural Networks

Many layers of neurons, millions of parameters

Signal Input Signal **CAT** TREE CAR

Output

Neural Networks

Many layers of neurons, millions of parameters

Signal Input Signal **RIGHT**

Output

Reminder: Training: Finding the Best Parameters

Searching for parameters that minimize mean squared error

Reminder: Training: Finding the Best Parameters

Searching for parameters that minimize mean squared error

Reminder: Linear Regression

Methods for optimizing the objective

Performance measure: Mean Squared Error

Grid search

Random search

- (Solve for the minimum of this paraboloid)
- Gradient descent

Reminder: Linear Regression

Methods for optimizing the objective

- Grid search
- Random search
- (Solve for the minimum of this paraboloid)
- Gradient descent
 - Low learning rate
 - Med learning rate
 - High learning rate

Performance measure: Mean Squared Error

Neural Network Optimization

Methods for minimizing the mean squared error for a neural network

- **⊸** Grid search
- Random search
 - © Can't solve for the minimum
- Gradient descent
 - Can get stuck
 - Different starting points can lead to different results

Neural Network Optimization

Gradient descent (the same, just more params)

Initialize:

- Select a learning rate, α
- $w \leftarrow random$
- $b \leftarrow random$

Repeat:

- 1 Calculate gradient: $grad_w$, $grad_b$
- 2. New parameter values by subtracting the gradient (scaled by the learning rate):
 - $w_{new} \leftarrow w_{prev} \alpha \cdot grad_w$
 - $b_{new} \leftarrow b_{prev} \alpha \cdot grad_b$

MSE

