Overlap and Independence
In
Multiset Comprehension Patterns

Edmund S.L. Lam lliano Cervesato

sllam@qatar.cmu.edu iliano@cmu.edu

Supported by QNRF grants NPRP 4-1593-1-260 and 4-341-1-059

ay3
-
S -;‘,’7.
ﬁ! [Ll
WRFh 4
qunJlt:l:-JLll}J g,b.’ll Agusall
;F’tﬂ% Qatar National Research Fund

Member of Qatar Foundation

Context

Outline

€@ The Context

Context

Comingle

A programming language for distributed mobile apps

@ Designed to implement mobile apps that run across Android devices

e Enables high-level system-centric abstraction

o specifies distributed computations as one declarative program
e compiles into node-centric fragments, executed by each node

o Typed multiset rewriting with

@ decentralization

@ comprehension patterns
@ time synchronization

e modularity

e Declarative, concise, roots in linear logic

Context

Comingle

A programming language for distributed mobile apps

@ Designed to implement mobile apps that run across Android devices

e Enables high-level system-centric abstraction

o specifies distributed computations as one declarative program
e compiles into node-centric fragments, executed by each node

o Typed multiset rewriting with

@ decentralization

@ comprehension patterns
@ time synchronization

e modularity

e Declarative, concise, roots in linear logic

Context

Example: Swap Data between X and Y up to Threshold P

Example: Swap Data between X and Y up to Threshold P

e In math:

[X]swap(Y, P)
pivotSwap : [[X]item(D) | D > Py, — [[Y]item(D)fp _x,
[[Ylitem(D) | D < P{p_y, U[X]item(D)Jp_y,

Context

Example: Swap Data between X and Y up to Threshold P

e In math:

[X]swap(Y, P)
pivotSwap : [[X]item(D) | D > P{, . — [[Y]item(D){p._x.

[[Y]item(D) | D < P{p_,y, [[X]item(D){p_y,
e In code:
predicate swap :: (loc,int) -> trigger.
predicate item :: int -> fact.
predicate display :: (string,A) -> actuator.

rule pivotSwap :: [X]swap(Y,P),
{[X]item(D) |D->Xs. D >= P},
{[Y]item(D) |D->Ys. D <= P}
--0 [X]display(Msg,size(Ys),Y), {[X]item(D) |D<-Ys},
[Y]display(Msg,size(Xs),X), {[Y]item(D) |D<-Xs}
where Msg = "Received %s items from %s".

Context

Example: pivotSwap Execution

[X]swap(Y,P)

{[X]item(D)|D->Xs.D>=P} --o0 [X]display(Msg,size(Ys),Y), {[X]item(D)|D<-Ys}
{ |D->Ys.D<=P} [Y]display(Msg,size(Xs),X), {[Y]item(D) |D<-Xs}
where Msg = "Received %s items from %s".

Let s = swap, i = item and d = display

Node: nl Node: n2 Node: n3
s(n2,5),i(4),i(6),i(8) i(3),i(20)

s(n2, 10), i(18)

Context

Example: pivotSwap Execution

[X]swap(Y,P)

{[X]item(D)|D->Xs.D>=P} --o0 [X]display(Msg,size(Ys),Y), {[X]item(D)|D<-Ys}
{ |D->Ys.D<=P} [Y]display(Msg,size(Xs),X), {[Y]item(D) |D<-Xs}
where Msg = "Received %s items from %s".

Let s = swap, i = item and d = display
Node: nl Node:
s(n2,5),i(4),i(6),i(8) ,1(20)

Node: n3
s(n2,10), i(18)

Context

Example: pivotSwap Execution

[X]swap(Y,P)

{[X]item(D)|D->Xs.D>=P} --o0 [X]display(Msg,size(Ys),Y), {[X]item(D)|D<-Ys}
{ |D->Ys.D<=P} [Y]display(Msg,size(Xs),X), {[Y]item(D) |D<-Xs}
where Msg = "Received %s items from %s".

Let s = swap, i = item and d = display

Node: nl Node: Node: n3
s(n2,5),i(4),i(6),i(8) | , i(20) s(n2,10), i(18)
Node: nl Node: n?2 Node: n3
d("1 from n2") d("2 from n1")

i(3), i(4) i(6), i(8), i(20) s(n2, 10), i(18)

Context

Example: pivotSwap Execution

[X]swap(Y,P)

{[X]item(D)|D->Xs.D>=P} --o0 [X]display(Msg,size(Ys),Y), {[X]item(D)|D<-Ys}
{ |D->Ys.D<=P} [Y]display(Msg,size(Xs),X), {[Y]item(D) |D<-Xs}
where Msg = "Received %s items from %s".

Let s = swap, i = item and d = display

Node: nl Node: n2 Node: n3
s(n2,5),i(4),i(6),i(8) i(3),i(20)

I

Node: nl Node:

s(n2, 10), i(18)

Node: n3
s(n2, 10), i(18)

d("1 from n2")
i(3),i(4)

, , 1(20)

d("2 from n1") | <—

Context

Example: pivotSwap Execution

[X]swap(Y,P)
{[X]item(D)|D->Xs.D>=P} --o0 [X]display(Msg,size(Ys),Y), {[X]item(D)|D<-Ys}
{ |D->Ys.D<=P} [Y]display(Msg,size(Xs),X), {[Y]item(D) |D<-Xs}

where Msg = "Received %s items from %s".

Let s = swap, i = item and d = display

Node: nl Node: n2 Node: n3
s(n2,5),i(4),1(6),i(8) T~ i(3),i(20) s(n2, 10), i(18)
Node: nl Node: Node: 13
d("1 from n2") d("2 from n1") | <——

i(3). i(a) (o) i(20) s(n2, 10), i(18)
1
Node: nl d(ﬂ“g"";e—:”zl”) Node: n3

Context

Try it Yourselt!

e Download from
https://github.com/sllam/comingle
Show your support, please STAR Comingle GitHub repository!

e Networking over Wifi-Direct, NFC, LAN and Bluetooth

e support for drop-in/drop-out

e Proof-of-concept apps

e Drag Racing — Racing cars across mobile devices

e Battleship — Traditional maritime war game, multi-party
o Wifi-Direct directory — Maintaining IP table for Wifi-Direct

@ Musical shares — Bounce a musical piece between devices

e Swarbble — Real-time team-based scrabble

e Mafia — Traditional party game, with a mobile twist
e CoDoodle — Interactive presentation tool

https://github.com/sllam/comingle

Outline

© The Problem

(A Comingle program P is a set of rules r: E|g — B where B is also a

multisets of expressions; we are also ignoring locations and types)

o A head pattern E | g consists of

o a multiset of expressions E
@ a Boolean guard g

e An expression E is either
o a fact: p(t)

o a comprehension: 1p(t) | gf._ ,
o Multiset of all p(t) in the state that satisfy g
e X boundin gand t
e Comprehension range T is the multiset of all bindings x

Matching Semantics

o A state St is a multiset of ground facts

o Matching a head pattern H = E | g against a state St
with residual St™:

St > St~
Holds if St = St™, St and there is a ground substitution

0 such that

o OE matches St
o St~ does not match any comprehension in 6E
e fOg is valid

OF Zpeqq StT 0E =, St | Og

E
StT,St™ NGILIN

Comprehensions in E | g match maximal portions of St

Pattern Interactions

When do two head patterns interfere with each other?

Useful for
@ debugging

@ implementation
@ reasoning

@ cost analysis

Interference?
@ One's consumed facts may prevent the other from being applicable

@ ...possibly concurrently

Overlap and Independence

H, = E | g1 and Hy = E, | g» without variables in common
e overlap if there is a state St such that

H

e St >3 Sty for some St; and
H

@ St >23 Sty for some St»,

. Hi || H
but there is no St’ such that St & St'.

E.g., Hi = p(a, X),q(X) and Ho = p(Y,Y), r(2)
Take St = (a,a),q(a), r(b)

e are independent if they don't overlap

E.g., Hi and H; = p(b, Y), r(2)

Are there algorithmic criteria?

Solution

Outline

© The (Partial) Solution

Solution

Case: Plain Multisets

H = F: empty guard and no comprehensions

Hi and H> overlap iff one contains a fact unifiable in the other:
° Hl — p(a)a Fll
° H2 — p(5)7 F2/
o there is @ such that dt; = 01,

Notes:
o p(t1) and p(t>) may not be unique
e Polynomial complexity .. .for well-behaved term languages
e Implemented using term-language unification

Solution

Case: Guarded Multisets

H=F | g: no comprehensions — found in most rule-based languages

H: and H> overlap iff
° Hl — p(a)a €1/
° H2 — p(t2)7 FZ/
o there is @ such that 0t; = 0t, and = gy and = O

Examples:

o HH=p(X)| X >3and H, =p(Y) | Y < 10 overlap
E.g., in state p(7)

o Hy and HS = p(Y) | Y < 3 are independent

Implementation: compute unifiers ¢ for p(t;) and p(t>), and then
pass 0gi; and Ogo to an SMT solver

Solution

Case: Open-ended Multisets

H = E | g: comprehension ranges is never used

o p(X), {p(x) [x> 0f,

e but not p(X), | p(x) | x > 0] | size(Xs) =0

x—Xs
H: and H> overlap exactly as in last case!
e Open-ended comprehensions can never fall
e At most return the empty multiset
Consider H; = p(X) and H, = | p(x)}

o p(a) =% o

x—=Xs"

o p(a) 2 o

Hy || H H
o p(a) Al o pecause @ > o

Solution

General Case

Unsolved!

Solution

General Case

Unsolved!

Hy = [p(x)oxs:a(Y) | Y € Xs and H, = p(Z)

are overlapping:
@ Succeed separately on 5t = p(a), g(a)

@ Composition fails as guard of H- fails

Solution

General Case

Unsolved!

Hy = [p(x)oxs:a(Y) | Y € Xs and H, = p(Z)

are overlapping:
@ Succeed separately on 5t = p(a), g(a)

@ Composition fails as guard of H- fails

But
Hi=1p(x) | x<3§, . x.,q(Y)|YeXs and Hyo=p(Z)|Z>5

are independent:

@ because no fact p(n) can match both patterns

Solution

General Case

Hy = 1p(x)T,_ . | size(Xs) > 0 and H» = p(2)

Solution

General Case

Hy = 1p(x)T,_ . | size(Xs) > 0 and H» = p(2)

are overlapping:
@ Succeed separately on S5t = p(a)

@ Composition fails as Xs set to &, violating guard

Solution

General Case

Hy = 1p(x)T,_ . | size(Xs) > 0 and H» = p(2)

are overlapping:
@ Succeed separately on S5t = p(a)

@ Composition fails as Xs set to &, violating guard

Hi = p(x)J, x| size(Xs) <8 and H, = p(Z2)

Solution

General Case

Hy = 1p(x)T,_ . | size(Xs) > 0 and H» = p(2)

are overlapping:
@ Succeed separately on S5t = p(a)

@ Composition fails as Xs set to &, violating guard

But
Hy = 1p(x)].x | size(Xs) < 8 and Hy = p(Z)

are independent:

@ because it has an upper bound on the comprehension range, not a lower
bound

Solution

General Case

Hy = 1p(x)T,_ . | size(Xs) > 0 and H» = p(2)

are overlapping:
@ Succeed separately on S5t = p(a)

@ Composition fails as Xs set to &, violating guard

But
Hy = 1p(x)].x | size(Xs) < 8 and Hy = p(Z)

are independent:

@ because it has an upper bound on the comprehension range, not a lower
bound

Negation-as-absence:

Hi = p(x)§, . xs | size(Xs) =0 and H, = p(Z)

Solution

General Case

Hy =190 xer LAy xe and Hy = p(Z)

are overlapping:
@ Succeed separately on 5t = p(a), g(a)

@ Composition fails

Solution

General Case

Hy =190 xer LAy xe and Hy = p(Z)

are overlapping:
@ Succeed separately on 5t = p(a), g(a)

@ Composition fails

Hy = 1p()xe:1ay) |y €X55,ye and Hy = p(2)
are independent:

@ because it filters out values for Ys rather than requiring that some terms
be present

Conclusions

Outline

@ The Conclusions

Conclusions

Future Work

Lots more work to be done!

Questions?

Comingle Example: Drag Racing

PLAYER 1 PLAYER 2

<<A B>>

Finish

o Inspired by Chrome Racer (www.chrome.com/racer)
e Race across a group of mobile devices

@ Purely local communications

www.chrome.com/racer

Implementing Drag Racing in Comingle

rule init :: [I]initRace(Ls)
--0 {[Alnext(B)|(A,B)<-Cs}, [Ellast(),
{[I]has(P), [Plall(Ps), [Plat(I), [PlrendTrack(Ls) | P<-Ps}
where (Cs,E) = makeChain(I,Ls), Ps = list2mset(Ls).
rule start :: [X]all(Ps) \ [X]startRace() --o {[P]release()|P<-Ps}.
rule tap i [XTat(Y) \ [X]sendTap() --o [Y]recvTap(X).
rule trans :: [X]next(Z) \ [X]exiting(Y), [Y]at(X) --o [Zlhas(Y), [Y]at(Z).

rule win :: [X]last() \ [X]all(Ps), [X]exiting(Y) --o {[P]decWinner(Y) | P <- Ps}.

e + 862 lines of properly indented Java code

@ 700++ lines of local operations (e.g., display and Ul operations)
@ < 100 lines for initializing Comingle run-time

	The Context
	The Problem
	The (Partial) Solution
	The Conclusions

