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Comingle

A programming language for distributed mobile apps

Designed to implement mobile apps that run across Android devices

Enables high-level system-centric abstraction

speci�es distributed computations as one declarative program
compiles into node-centric fragments, executed by each node

Typed multiset rewriting with

decentralization
comprehension patterns
time synchronization
modularity

Declarative, concise, roots in linear logic
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Example: Swap Data between X and Y up to Threshold P

In math:

pivotSwap :
[X ]swap(Y ,P)
*[X ]item(D) | D ≥ P+

D�Xs

*[Y ]item(D) | D ≤ P+
D�Ys

( *[Y ]item(D)+
D�Xs

*[X ]item(D)+
D�Ys

In code:
predicate swap :: (loc,int) -> trigger.

predicate item :: int -> fact.

predicate display :: (string,A) -> actuator.

rule pivotSwap :: [X]swap(Y,P),

{[X]item(D)|D->Xs. D >= P},

{[Y]item(D)|D->Ys. D <= P}

--o [X]display(Msg,size(Ys),Y), {[X]item(D)|D<-Ys},

[Y]display(Msg,size(Xs),X), {[Y]item(D)|D<-Xs}

where Msg = "Received %s items from %s".
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Example: pivotSwap Execution

[X]swap(Y,P)
{[X]item(D)|D->Xs.D>=P} --o [X]display(Msg,size(Ys),Y), {[X]item(D)|D<-Ys}
{[Y]item(D)|D->Ys.D<=P} [Y]display(Msg,size(Xs),X), {[Y]item(D)|D<-Xs}

where Msg = "Received %s items from %s".

Let s = swap, i = item and d = display

Node: n1

s(n2, 5), i(4), i(6), i(8)

Node: n2

i(3), i(20)

Node: n3

s(n2, 10), i(18)

7→

Node: n1

d(”1 from n2”)
i(3), i(4)

Node: n2

d(”2 from n1”)
i(6), i(8), i(20)

Node: n3

s(n2, 10), i(18)

7→

Node: n1

d(”1 from n2”)
i(4), i(3)

Node: n2

d(”2 from n1”)
d(”1 from n3”)
i(18), i(20)

Node: n3

d(”2 from n2”)
i(6), i(8)
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Try it Yourself!

Download from

https://github.com/sllam/comingle

Show your support, please STAR Comingle GitHub repository!

Networking over Wi�-Direct, NFC, LAN and Bluetooth
support for drop-in/drop-out

Proof-of-concept apps
Drag Racing � Racing cars across mobile devices
Battleship � Traditional maritime war game, multi-party
Wi�-Direct directory � Maintaining IP table for Wi�-Direct
Musical shares � Bounce a musical piece between devices
Swarbble � Real-time team-based scrabble
Ma�a � Traditional party game, with a mobile twist
CoDoodle � Interactive presentation tool

https://github.com/sllam/comingle
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Syntax

(A Comingle program P is a set of rules r : Ē | g ( B where B is also a

multisets of expressions; we are also ignoring locations and types)

A head pattern Ē | g consists of
a multiset of expressions Ē
a Boolean guard g

An expression E is either
a fact: p(~t)
a comprehension: *p(~t) | g +~x�T

Multiset of all p(~t) in the state that satisfy g
~x bound in g and ~t
Comprehension range T is the multiset of all bindings ~x
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Matching Semantics

A state St is a multiset of ground facts

Matching a head pattern H = Ē | g against a state St
with residual St−:

St
H�→ St−

Holds if St = St+, St− and there is a ground substitution
θ such that

θĒ matches St+

St− does not match any comprehension in θĒ
θg is valid

θĒ ,head St
+ θĒ ,¬head St

− |= θg

St
+, St−

Ē|g
�−−→ St

−

Comprehensions in Ē | g match maximal portions of St
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Pattern Interactions

When do two head patterns interfere with each other?

Useful for

debugging

implementation

reasoning

cost analysis

Interference?

One's consumed facts may prevent the other from being applicable

. . . possibly concurrently
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Overlap and Independence

H1 = Ē1 | g1 and H2 = Ē2 | g2 without variables in common

overlap if there is a state St such that

St
H1�−→ St1 for some St1 and

St
H2�−→ St2 for some St2,

but there is no St ′ such that St
H1‖H2�−−−→ St ′.

E.g., H1 = p(a,X ), q(X ) and H2 = p(Y ,Y ), r(Z)

Take St = (a, a), q(a), r(b)

are independent if they don't overlap

E.g., H1 and H ′2 = p(b,Y ), r(Z)

Are there algorithmic criteria?
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Case: Plain Multisets

H = F̄ : empty guard and no comprehensions

H1 and H2 overlap i� one contains a fact uni�able in the other:

H1 = p(~t1), F̄ ′
1

H2 = p(~t2), F̄ ′
2

there is θ such that θ~t1 = θ~t2

Notes:

p(~t1) and p(~t2) may not be unique

Polynomial complexity . . . for well-behaved term languages

Implemented using term-language uni�cation
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Case: Guarded Multisets

H = F̄ | g : no comprehensions � found in most rule-based languages

H1 and H2 overlap i�

H1 = p(~t1), F̄ ′
1

H2 = p(~t2), F̄ ′
2

there is θ such that θ~t1 = θ~t2 and |= θg1 and |= θg2

Examples:

H1 = p(X ) | X > 3 and H2 = p(Y ) | Y < 10 overlap
E.g., in state p(7)

H1 and H ′
2

= p(Y ) | Y < 3 are independent

Implementation: compute uni�ers θ for p(~t1) and p(~t2), and then

pass θg1 and θg2 to an SMT solver
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Case: Open-ended Multisets

H = Ē | g : comprehension ranges is never used

p(X ), *p(x) | x > 0+x�Xs

but not p(X ), *p(x) | x > 0+x�Xs | size(Xs) = 0

H1 and H2 overlap exactly as in last case!

Open-ended comprehensions can never fail

At most return the empty multiset

Consider H1 = p(X ) and H2 = *p(x)+x�Xs :

p(a)
H1�−→ ∅

p(a)
H2�−→ ∅

p(a)
H1‖H2�−−−→ ∅ because ∅ H2�−→ ∅
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General Case

Unsolved!

H1 = *p(x)+x�Xs , q(Y ) | Y ∈ Xs and H2 = p(Z )

are overlapping:

Succeed separately on St = p(a), q(a)

Composition fails as guard of H2 fails

But

H1 = *p(x) | x < 3+x�Xs , q(Y ) | Y ∈ Xs and H2 = p(Z ) | Z > 5

are independent:

because no fact p(n) can match both patterns
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General Case

H1 = *p(x)+x�Xs | size(Xs) > 0 and H2 = p(Z )

are overlapping:

Succeed separately on St = p(a)

Composition fails as Xs set to ∅, violating guard

But

H1 = *p(x)+x�Xs | size(Xs) ≤ 8 and H2 = p(Z )

are independent:

because it has an upper bound on the comprehension range, not a lower
bound

Negation-as-absence:

H1 = *p(x)+x�Xs | size(Xs) = 0 and H2 = p(Z )
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General Case

H1 = *p(x)+x�Xs , *q(y)+y�Xs and H2 = p(Z )

are overlapping:

Succeed separately on St = p(a), q(a)

Composition fails

H1 = *p(x)+x�Xs , *q(y) | y ∈ Xs+y�Ys and H2 = p(Z )

are independent:

because it �lters out values for Ys rather than requiring that some terms
be present
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Future Work

Lots more work to be done!
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Questions?
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Comingle Example: Drag Racing

Inspired by Chrome Racer (www.chrome.com/racer)

Race across a group of mobile devices

Purely local communications

www.chrome.com/racer
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Implementing Drag Racing in Comingle

rule init :: [I]initRace(Ls)
--o {[A]next(B)|(A,B)<-Cs}, [E]last(),

{[I]has(P), [P]all(Ps), [P]at(I), [P]rendTrack(Ls) | P<-Ps}
where (Cs,E) = makeChain(I,Ls), Ps = list2mset(Ls).

rule start :: [X]all(Ps) \ [X]startRace() --o {[P]release()|P<-Ps}.

rule tap :: [X]at(Y) \ [X]sendTap() --o [Y]recvTap(X).

rule trans :: [X]next(Z) \ [X]exiting(Y), [Y]at(X) --o [Z]has(Y), [Y]at(Z).

rule win :: [X]last() \ [X]all(Ps), [X]exiting(Y) --o {[P]decWinner(Y) | P <- Ps}.

+ 862 lines of properly indented Java code
700++ lines of local operations (e.g., display and UI operations)
< 100 lines for initializing Comingle run-time
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