
Context Problem Solution Conclusions

Overlap and Independence

in

Multiset Comprehension Patterns

Edmund S.L. Lam Iliano Cervesato

sllam@qatar.cmu.edu iliano@cmu.edu

Supported by QNRF grants NPRP 4-1593-1-260 and 4-341-1-059

June 2016

Context Problem Solution Conclusions

Outline

1 The Context

2 The Problem

3 The (Partial) Solution

4 The Conclusions

Context Problem Solution Conclusions

Comingle

A programming language for distributed mobile apps

Designed to implement mobile apps that run across Android devices

Enables high-level system-centric abstraction

speci�es distributed computations as one declarative program
compiles into node-centric fragments, executed by each node

Typed multiset rewriting with

decentralization
comprehension patterns
time synchronization
modularity

Declarative, concise, roots in linear logic

Context Problem Solution Conclusions

Comingle

A programming language for distributed mobile apps

Designed to implement mobile apps that run across Android devices

Enables high-level system-centric abstraction

speci�es distributed computations as one declarative program
compiles into node-centric fragments, executed by each node

Typed multiset rewriting with

decentralization
comprehension patterns
time synchronization
modularity

Declarative, concise, roots in linear logic

Context Problem Solution Conclusions

Example: Swap Data between X and Y up to Threshold P

In math:

pivotSwap :
[X]swap(Y ,P)
*[X]item(D) | D ≥ P+

D�Xs

*[Y]item(D) | D ≤ P+
D�Ys

(*[Y]item(D)+
D�Xs

*[X]item(D)+
D�Ys

In code:
predicate swap :: (loc,int) -> trigger.

predicate item :: int -> fact.

predicate display :: (string,A) -> actuator.

rule pivotSwap :: [X]swap(Y,P),

{[X]item(D)|D->Xs. D >= P},

{[Y]item(D)|D->Ys. D <= P}

--o [X]display(Msg,size(Ys),Y), {[X]item(D)|D<-Ys},

[Y]display(Msg,size(Xs),X), {[Y]item(D)|D<-Xs}

where Msg = "Received %s items from %s".

Context Problem Solution Conclusions

Example: Swap Data between X and Y up to Threshold P

In math:

pivotSwap :
[X]swap(Y ,P)
*[X]item(D) | D ≥ P+

D�Xs

*[Y]item(D) | D ≤ P+
D�Ys

(*[Y]item(D)+
D�Xs

*[X]item(D)+
D�Ys

In code:
predicate swap :: (loc,int) -> trigger.

predicate item :: int -> fact.

predicate display :: (string,A) -> actuator.

rule pivotSwap :: [X]swap(Y,P),

{[X]item(D)|D->Xs. D >= P},

{[Y]item(D)|D->Ys. D <= P}

--o [X]display(Msg,size(Ys),Y), {[X]item(D)|D<-Ys},

[Y]display(Msg,size(Xs),X), {[Y]item(D)|D<-Xs}

where Msg = "Received %s items from %s".

Context Problem Solution Conclusions

Example: Swap Data between X and Y up to Threshold P

In math:

pivotSwap :
[X]swap(Y ,P)
*[X]item(D) | D ≥ P+

D�Xs

*[Y]item(D) | D ≤ P+
D�Ys

(*[Y]item(D)+
D�Xs

*[X]item(D)+
D�Ys

In code:
predicate swap :: (loc,int) -> trigger.

predicate item :: int -> fact.

predicate display :: (string,A) -> actuator.

rule pivotSwap :: [X]swap(Y,P),

{[X]item(D)|D->Xs. D >= P},

{[Y]item(D)|D->Ys. D <= P}

--o [X]display(Msg,size(Ys),Y), {[X]item(D)|D<-Ys},

[Y]display(Msg,size(Xs),X), {[Y]item(D)|D<-Xs}

where Msg = "Received %s items from %s".

Context Problem Solution Conclusions

Example: pivotSwap Execution

[X]swap(Y,P)
{[X]item(D)|D->Xs.D>=P} --o [X]display(Msg,size(Ys),Y), {[X]item(D)|D<-Ys}
{[Y]item(D)|D->Ys.D<=P} [Y]display(Msg,size(Xs),X), {[Y]item(D)|D<-Xs}

where Msg = "Received %s items from %s".

Let s = swap, i = item and d = display

Node: n1

s(n2, 5), i(4), i(6), i(8)

Node: n2

i(3), i(20)

Node: n3

s(n2, 10), i(18)

7→

Node: n1

d(”1 from n2”)
i(3), i(4)

Node: n2

d(”2 from n1”)
i(6), i(8), i(20)

Node: n3

s(n2, 10), i(18)

7→

Node: n1

d(”1 from n2”)
i(4), i(3)

Node: n2

d(”2 from n1”)
d(”1 from n3”)
i(18), i(20)

Node: n3

d(”2 from n2”)
i(6), i(8)

Context Problem Solution Conclusions

Example: pivotSwap Execution

[X]swap(Y,P)
{[X]item(D)|D->Xs.D>=P} --o [X]display(Msg,size(Ys),Y), {[X]item(D)|D<-Ys}
{[Y]item(D)|D->Ys.D<=P} [Y]display(Msg,size(Xs),X), {[Y]item(D)|D<-Xs}

where Msg = "Received %s items from %s".

Let s = swap, i = item and d = display

Node: n1

s(n2, 5), i(4), i(6), i(8)
// Node: n2

i(3), i(20)

Node: n3

s(n2, 10), i(18)

7→

Node: n1

d(”1 from n2”)
i(3), i(4)

Node: n2

d(”2 from n1”)
i(6), i(8), i(20)

Node: n3

s(n2, 10), i(18)

7→

Node: n1

d(”1 from n2”)
i(4), i(3)

Node: n2

d(”2 from n1”)
d(”1 from n3”)
i(18), i(20)

Node: n3

d(”2 from n2”)
i(6), i(8)

Context Problem Solution Conclusions

Example: pivotSwap Execution

[X]swap(Y,P)
{[X]item(D)|D->Xs.D>=P} --o [X]display(Msg,size(Ys),Y), {[X]item(D)|D<-Ys}
{[Y]item(D)|D->Ys.D<=P} [Y]display(Msg,size(Xs),X), {[Y]item(D)|D<-Xs}

where Msg = "Received %s items from %s".

Let s = swap, i = item and d = display

Node: n1

s(n2, 5), i(4), i(6), i(8)
// Node: n2

i(3), i(20)

Node: n3

s(n2, 10), i(18)

7→

Node: n1

d(”1 from n2”)
i(3), i(4)

Node: n2

d(”2 from n1”)
i(6), i(8), i(20)

Node: n3

s(n2, 10), i(18)

7→

Node: n1

d(”1 from n2”)
i(4), i(3)

Node: n2

d(”2 from n1”)
d(”1 from n3”)
i(18), i(20)

Node: n3

d(”2 from n2”)
i(6), i(8)

Context Problem Solution Conclusions

Example: pivotSwap Execution

[X]swap(Y,P)
{[X]item(D)|D->Xs.D>=P} --o [X]display(Msg,size(Ys),Y), {[X]item(D)|D<-Ys}
{[Y]item(D)|D->Ys.D<=P} [Y]display(Msg,size(Xs),X), {[Y]item(D)|D<-Xs}

where Msg = "Received %s items from %s".

Let s = swap, i = item and d = display

Node: n1

s(n2, 5), i(4), i(6), i(8)
// Node: n2

i(3), i(20)

Node: n3

s(n2, 10), i(18)

7→

Node: n1

d(”1 from n2”)
i(3), i(4)

Node: n2

d(”2 from n1”)
i(6), i(8), i(20)

Node: n3

s(n2, 10), i(18)
oo

7→

Node: n1

d(”1 from n2”)
i(4), i(3)

Node: n2

d(”2 from n1”)
d(”1 from n3”)
i(18), i(20)

Node: n3

d(”2 from n2”)
i(6), i(8)

Context Problem Solution Conclusions

Example: pivotSwap Execution

[X]swap(Y,P)
{[X]item(D)|D->Xs.D>=P} --o [X]display(Msg,size(Ys),Y), {[X]item(D)|D<-Ys}
{[Y]item(D)|D->Ys.D<=P} [Y]display(Msg,size(Xs),X), {[Y]item(D)|D<-Xs}

where Msg = "Received %s items from %s".

Let s = swap, i = item and d = display

Node: n1

s(n2, 5), i(4), i(6), i(8)
// Node: n2

i(3), i(20)

Node: n3

s(n2, 10), i(18)

7→

Node: n1

d(”1 from n2”)
i(3), i(4)

Node: n2

d(”2 from n1”)
i(6), i(8), i(20)

Node: n3

s(n2, 10), i(18)
oo

7→

Node: n1

d(”1 from n2”)
i(4), i(3)

Node: n2

d(”2 from n1”)
d(”1 from n3”)
i(18), i(20)

Node: n3

d(”2 from n2”)
i(6), i(8)

Context Problem Solution Conclusions

Try it Yourself!

Download from

https://github.com/sllam/comingle

Show your support, please STAR Comingle GitHub repository!

Networking over Wi�-Direct, NFC, LAN and Bluetooth
support for drop-in/drop-out

Proof-of-concept apps
Drag Racing � Racing cars across mobile devices
Battleship � Traditional maritime war game, multi-party
Wi�-Direct directory � Maintaining IP table for Wi�-Direct
Musical shares � Bounce a musical piece between devices
Swarbble � Real-time team-based scrabble
Ma�a � Traditional party game, with a mobile twist
CoDoodle � Interactive presentation tool

https://github.com/sllam/comingle

Context Problem Solution Conclusions

Outline

1 The Context

2 The Problem

3 The (Partial) Solution

4 The Conclusions

Context Problem Solution Conclusions

Syntax

(A Comingle program P is a set of rules r : Ē | g (B where B is also a

multisets of expressions; we are also ignoring locations and types)

A head pattern Ē | g consists of
a multiset of expressions Ē
a Boolean guard g

An expression E is either
a fact: p(~t)
a comprehension: *p(~t) | g +~x�T

Multiset of all p(~t) in the state that satisfy g
~x bound in g and ~t
Comprehension range T is the multiset of all bindings ~x

Context Problem Solution Conclusions

Matching Semantics

A state St is a multiset of ground facts

Matching a head pattern H = Ē | g against a state St
with residual St−:

St
H�→ St−

Holds if St = St+, St− and there is a ground substitution
θ such that

θĒ matches St+

St− does not match any comprehension in θĒ
θg is valid

θĒ ,head St
+ θĒ ,¬head St

− |= θg

St
+, St−

Ē|g
�−−→ St

−

Comprehensions in Ē | g match maximal portions of St

Context Problem Solution Conclusions

Pattern Interactions

When do two head patterns interfere with each other?

Useful for

debugging

implementation

reasoning

cost analysis

Interference?

One's consumed facts may prevent the other from being applicable

. . . possibly concurrently

Context Problem Solution Conclusions

Overlap and Independence

H1 = Ē1 | g1 and H2 = Ē2 | g2 without variables in common

overlap if there is a state St such that

St
H1�−→ St1 for some St1 and

St
H2�−→ St2 for some St2,

but there is no St ′ such that St
H1‖H2�−−−→ St ′.

E.g., H1 = p(a,X), q(X) and H2 = p(Y ,Y), r(Z)

Take St = (a, a), q(a), r(b)

are independent if they don't overlap

E.g., H1 and H ′2 = p(b,Y), r(Z)

Are there algorithmic criteria?

Context Problem Solution Conclusions

Outline

1 The Context

2 The Problem

3 The (Partial) Solution

4 The Conclusions

Context Problem Solution Conclusions

Case: Plain Multisets

H = F̄ : empty guard and no comprehensions

H1 and H2 overlap i� one contains a fact uni�able in the other:

H1 = p(~t1), F̄ ′
1

H2 = p(~t2), F̄ ′
2

there is θ such that θ~t1 = θ~t2

Notes:

p(~t1) and p(~t2) may not be unique

Polynomial complexity . . . for well-behaved term languages

Implemented using term-language uni�cation

Context Problem Solution Conclusions

Case: Guarded Multisets

H = F̄ | g : no comprehensions � found in most rule-based languages

H1 and H2 overlap i�

H1 = p(~t1), F̄ ′
1

H2 = p(~t2), F̄ ′
2

there is θ such that θ~t1 = θ~t2 and |= θg1 and |= θg2

Examples:

H1 = p(X) | X > 3 and H2 = p(Y) | Y < 10 overlap
E.g., in state p(7)

H1 and H ′
2

= p(Y) | Y < 3 are independent

Implementation: compute uni�ers θ for p(~t1) and p(~t2), and then

pass θg1 and θg2 to an SMT solver

Context Problem Solution Conclusions

Case: Open-ended Multisets

H = Ē | g : comprehension ranges is never used

p(X), *p(x) | x > 0+x�Xs

but not p(X), *p(x) | x > 0+x�Xs | size(Xs) = 0

H1 and H2 overlap exactly as in last case!

Open-ended comprehensions can never fail

At most return the empty multiset

Consider H1 = p(X) and H2 = *p(x)+x�Xs :

p(a)
H1�−→ ∅

p(a)
H2�−→ ∅

p(a)
H1‖H2�−−−→ ∅ because ∅ H2�−→ ∅

Context Problem Solution Conclusions

General Case

Unsolved!

H1 = *p(x)+x�Xs , q(Y) | Y ∈ Xs and H2 = p(Z)

are overlapping:

Succeed separately on St = p(a), q(a)

Composition fails as guard of H2 fails

But

H1 = *p(x) | x < 3+x�Xs , q(Y) | Y ∈ Xs and H2 = p(Z) | Z > 5

are independent:

because no fact p(n) can match both patterns

Context Problem Solution Conclusions

General Case

Unsolved!

H1 = *p(x)+x�Xs , q(Y) | Y ∈ Xs and H2 = p(Z)

are overlapping:

Succeed separately on St = p(a), q(a)

Composition fails as guard of H2 fails

But

H1 = *p(x) | x < 3+x�Xs , q(Y) | Y ∈ Xs and H2 = p(Z) | Z > 5

are independent:

because no fact p(n) can match both patterns

Context Problem Solution Conclusions

General Case

Unsolved!

H1 = *p(x)+x�Xs , q(Y) | Y ∈ Xs and H2 = p(Z)

are overlapping:

Succeed separately on St = p(a), q(a)

Composition fails as guard of H2 fails

But

H1 = *p(x) | x < 3+x�Xs , q(Y) | Y ∈ Xs and H2 = p(Z) | Z > 5

are independent:

because no fact p(n) can match both patterns

Context Problem Solution Conclusions

General Case

H1 = *p(x)+x�Xs | size(Xs) > 0 and H2 = p(Z)

are overlapping:

Succeed separately on St = p(a)

Composition fails as Xs set to ∅, violating guard

But

H1 = *p(x)+x�Xs | size(Xs) ≤ 8 and H2 = p(Z)

are independent:

because it has an upper bound on the comprehension range, not a lower
bound

Negation-as-absence:

H1 = *p(x)+x�Xs | size(Xs) = 0 and H2 = p(Z)

Context Problem Solution Conclusions

General Case

H1 = *p(x)+x�Xs | size(Xs) > 0 and H2 = p(Z)

are overlapping:

Succeed separately on St = p(a)

Composition fails as Xs set to ∅, violating guard

But

H1 = *p(x)+x�Xs | size(Xs) ≤ 8 and H2 = p(Z)

are independent:

because it has an upper bound on the comprehension range, not a lower
bound

Negation-as-absence:

H1 = *p(x)+x�Xs | size(Xs) = 0 and H2 = p(Z)

Context Problem Solution Conclusions

General Case

H1 = *p(x)+x�Xs | size(Xs) > 0 and H2 = p(Z)

are overlapping:

Succeed separately on St = p(a)

Composition fails as Xs set to ∅, violating guard

But

H1 = *p(x)+x�Xs | size(Xs) ≤ 8 and H2 = p(Z)

are independent:

because it has an upper bound on the comprehension range, not a lower
bound

Negation-as-absence:

H1 = *p(x)+x�Xs | size(Xs) = 0 and H2 = p(Z)

Context Problem Solution Conclusions

General Case

H1 = *p(x)+x�Xs | size(Xs) > 0 and H2 = p(Z)

are overlapping:

Succeed separately on St = p(a)

Composition fails as Xs set to ∅, violating guard

But

H1 = *p(x)+x�Xs | size(Xs) ≤ 8 and H2 = p(Z)

are independent:

because it has an upper bound on the comprehension range, not a lower
bound

Negation-as-absence:

H1 = *p(x)+x�Xs | size(Xs) = 0 and H2 = p(Z)

Context Problem Solution Conclusions

General Case

H1 = *p(x)+x�Xs | size(Xs) > 0 and H2 = p(Z)

are overlapping:

Succeed separately on St = p(a)

Composition fails as Xs set to ∅, violating guard

But

H1 = *p(x)+x�Xs | size(Xs) ≤ 8 and H2 = p(Z)

are independent:

because it has an upper bound on the comprehension range, not a lower
bound

Negation-as-absence:

H1 = *p(x)+x�Xs | size(Xs) = 0 and H2 = p(Z)

Context Problem Solution Conclusions

General Case

H1 = *p(x)+x�Xs , *q(y)+y�Xs and H2 = p(Z)

are overlapping:

Succeed separately on St = p(a), q(a)

Composition fails

H1 = *p(x)+x�Xs , *q(y) | y ∈ Xs+y�Ys and H2 = p(Z)

are independent:

because it �lters out values for Ys rather than requiring that some terms
be present

Context Problem Solution Conclusions

General Case

H1 = *p(x)+x�Xs , *q(y)+y�Xs and H2 = p(Z)

are overlapping:

Succeed separately on St = p(a), q(a)

Composition fails

H1 = *p(x)+x�Xs , *q(y) | y ∈ Xs+y�Ys and H2 = p(Z)

are independent:

because it �lters out values for Ys rather than requiring that some terms
be present

Context Problem Solution Conclusions

Outline

1 The Context

2 The Problem

3 The (Partial) Solution

4 The Conclusions

Context Problem Solution Conclusions

Future Work

Lots more work to be done!

Context Problem Solution Conclusions

Questions?

Context Problem Solution Conclusions

Comingle Example: Drag Racing

Inspired by Chrome Racer (www.chrome.com/racer)

Race across a group of mobile devices

Purely local communications

www.chrome.com/racer

Context Problem Solution Conclusions

Implementing Drag Racing in Comingle

rule init :: [I]initRace(Ls)
--o {[A]next(B)|(A,B)<-Cs}, [E]last(),

{[I]has(P), [P]all(Ps), [P]at(I), [P]rendTrack(Ls) | P<-Ps}
where (Cs,E) = makeChain(I,Ls), Ps = list2mset(Ls).

rule start :: [X]all(Ps) \ [X]startRace() --o {[P]release()|P<-Ps}.

rule tap :: [X]at(Y) \ [X]sendTap() --o [Y]recvTap(X).

rule trans :: [X]next(Z) \ [X]exiting(Y), [Y]at(X) --o [Z]has(Y), [Y]at(Z).

rule win :: [X]last() \ [X]all(Ps), [X]exiting(Y) --o {[P]decWinner(Y) | P <- Ps}.

+ 862 lines of properly indented Java code
700++ lines of local operations (e.g., display and UI operations)
< 100 lines for initializing Comingle run-time

	The Context
	The Problem
	The (Partial) Solution
	The Conclusions

