Print all nodes less than a value x in a Min Heap.
Given a binary min heap and a value x, print all the binary heap nodes having value less than the given value x.
Examples : Consider the below min heap as common input two both below examples. 2 / \ 3 15 / \ / \ 5 4 45 80 / \ / \ 6 150 77 120 Input : x = 15 Output : 2 3 5 6 4 Input : x = 80 Output : 2 3 5 6 4 77 15 45
The idea is to do a preorder traversal of the given Binary heap. While doing preorder traversal, if the value of a node is greater than the given value x, we return to the previous recursive call. Because all children nodes in a min heap are greater than the parent node. Otherwise we print current node and recur for its children.
Implementation:
// A C++ program to print all values
// smaller than a given value in Binary
// Heap
#include <bits/stdc++.h>
using namespace std;
// A class for Min Heap
class MinHeap {
// pointer to array of elements in heap
int* harr;
// maximum possible size of min heap
int capacity;
int heap_size; // Current no. of elements.
public:
// Constructor
MinHeap(int capacity);
// to heapify a subtree with root at
// given index
void MinHeapify(int);
int parent(int i) { return (i - 1) / 2; }
int left(int i) { return (2 * i + 1); }
int right(int i) { return (2 * i + 2); }
// Inserts a new key 'k'
void insertKey(int k);
// Function to print all nodes smaller than k
void printSmallerThan(int k, int pos);
};
// Function to print all elements smaller than k
void MinHeap::printSmallerThan(int x, int pos = 0)
{
/* Make sure item exists */
if (pos >= heap_size)
return;
if (harr[pos] >= x) {
/* Skip this node and its descendants,
as they are all >= x . */
return;
}
cout << harr[pos] << " ";
printSmallerThan(x, left(pos));
printSmallerThan(x, right(pos));
}
// Constructor: Builds a heap from a given
// array a[] of given size
MinHeap::MinHeap(int cap)
{
heap_size = 0;
capacity = cap;
harr = new int[cap];
}
// Inserts a new key 'k'
void MinHeap::insertKey(int k)
{
if (heap_size == capacity) {
cout << "\nOverflow: Could not insertKey\n";
return;
}
// First insert the new key at the end
heap_size++;
int i = heap_size - 1;
harr[i] = k;
// Fix the min heap property if it is violated
while (i != 0 && harr[parent(i)] > harr[i]) {
swap(harr[i], harr[parent(i)]);
i = parent(i);
}
}
// A recursive method to heapify a subtree with
// root at given index. This method assumes that
// the subtrees are already heapified
void MinHeap::MinHeapify(int i)
{
int l = left(i);
int r = right(i);
int smallest = i;
if (l < heap_size && harr[l] < harr[i])
smallest = l;
if (r < heap_size && harr[r] < harr[smallest])
smallest = r;
if (smallest != i) {
swap(harr[i], harr[smallest]);
MinHeapify(smallest);
}
}
// Driver program to test above functions
int main()
{
MinHeap h(50);
h.insertKey(3);
h.insertKey(2);
h.insertKey(15);
h.insertKey(5);
h.insertKey(4);
h.insertKey(45);
h.insertKey(80);
h.insertKey(6);
h.insertKey(150);
h.insertKey(77);
h.insertKey(120);
// Print all nodes smaller than 100.
int x = 100;
h.printSmallerThan(x);
return 0;
}
// A Java program to print all values
// smaller than a given value in Binary
// Heap
// A class for Min Heap
class MinHeap {
// array of elements in heap
int[] harr;
// maximum possible size of min heap
int capacity;
int heap_size; // Current no. of elements.
int parent(int i) { return (i - 1) / 2; }
int left(int i) { return (2 * i + 1); }
int right(int i) { return (2 * i + 2); }
// Function to print all elements smaller than k
void printSmallerThan(int x, int pos)
{
/* Make sure item exists */
if (pos >= heap_size)
return;
if (harr[pos] >= x) {
/* Skip this node and its descendants,
as they are all >= x . */
return;
}
System.out.print(harr[pos] + " ");
printSmallerThan(x, left(pos));
printSmallerThan(x, right(pos));
}
// Constructor: Builds a heap of given size
public MinHeap(int cap)
{
heap_size = 0;
capacity = cap;
harr = new int[cap];
}
// Inserts a new key 'k'
void insertKey(int k)
{
if (heap_size == capacity) {
System.out.println("Overflow: Could not insertKey");
return;
}
// First insert the new key at the end
heap_size++;
int i = heap_size - 1;
harr[i] = k;
// Fix the min heap property if it is violated
while (i != 0 && harr[parent(i)] > harr[i]) {
swap(i, parent(i));
i = parent(i);
}
}
// A utility function to swap two elements
void swap(int x, int y)
{
int temp = harr[x];
harr[x] = harr[y];
harr[y] = temp;
}
// Driver code
public static void main(String[] args)
{
MinHeap h = new MinHeap(15);
h.insertKey(3);
h.insertKey(2);
h.insertKey(15);
h.insertKey(5);
h.insertKey(4);
h.insertKey(45);
h.insertKey(80);
h.insertKey(6);
h.insertKey(150);
h.insertKey(77);
h.insertKey(120);
// Print all nodes smaller than 100.
int x = 100;
h.printSmallerThan(x, 0);
}
};
// This code is contributed by shubham96301
# A Python program to print all values
# smaller than a given value in Binary
# Heap
# A class for Min Heap
class MinHeap:
# pointer to array of elements in heap
harr = []
# maximum possible size of min heap
capacity = 0
heap_size = 0 # Current no. of elements.
# Constructor
def __init__(self, capacity):
self.heap_size = 0
self.capacity = capacity
self.harr = [0] * capacity
# to heapify a subtree with root at
# given index
def MinHeapify(self, i):
l = self.left(i)
r = self.right(i)
smallest = i
if l < self.heap_size and self.harr[l] < self.harr[i]:
smallest = l
if r < self.heap_size and self.harr[r] < self.harr[smallest]:
smallest = r
if smallest != i:
self.harr[i], self.harr[smallest] = self.harr[smallest], self.harr[i]
self.MinHeapify(smallest)
def parent(self, i):
return (i - 1) // 2
def left(self, i):
return (2 * i + 1)
def right(self, i):
return (2 * i + 2)
# Inserts a new key 'k'
def insertKey(self, k):
if self.heap_size == self.capacity:
print("\nOverflow: Could not insertKey\n")
return
# First insert the new key at the end
self.heap_size += 1
i = self.heap_size - 1
self.harr[i] = k
# Fix the min heap property if it is violated
while i != 0 and self.harr[self.parent(i)] > self.harr[i]:
self.harr[i], self.harr[self.parent(i)] = self.harr[self.parent(i)], self.harr[i]
i = self.parent(i)
# Function to print all nodes smaller than k
def printSmallerThan(self, x, pos=0):
"""
Make sure item exists
"""
if pos >= self.heap_size:
return
if self.harr[pos] >= x:
"""
Skip this node and its descendants,
as they are all >= x .
"""
return
print(self.harr[pos], end=" ")
self.printSmallerThan(x, self.left(pos))
self.printSmallerThan(x, self.right(pos))
# Driver program to test above functions
def main():
h = MinHeap(50)
h.insertKey(3)
h.insertKey(2)
h.insertKey(15)
h.insertKey(5)
h.insertKey(4)
h.insertKey(45)
h.insertKey(80)
h.insertKey(6)
h.insertKey(150)
h.insertKey(77)
h.insertKey(120)
# Print all nodes smaller than 100.
x = 100
h.printSmallerThan(x)
if __name__ == "__main__":
main()
# This code is contributed by vikramshirsath177.
// A C# program to print all values
// smaller than a given value in
// Binary Heap
using System;
// A class for Min Heap
public class MinHeap
{
// array of elements in heap
int[] harr;
// maximum possible size of min heap
int capacity;
// Current no. of elements
int heap_size;
int parent(int i) { return (i - 1) / 2; }
int left(int i) { return (2 * i + 1); }
int right(int i) { return (2 * i + 2); }
// Function to print
// all elements smaller than k
void printSmallerThan(int x, int pos)
{
/* Make sure item exists */
if (pos >= heap_size)
return;
if (harr[pos] >= x)
{
/* Skip this node and its descendants,
as they are all >= x . */
return;
}
Console.Write(harr[pos] + " ");
printSmallerThan(x, left(pos));
printSmallerThan(x, right(pos));
}
// Constructor: Builds a heap of given size
public MinHeap(int cap)
{
heap_size = 0;
capacity = cap;
harr = new int[cap];
}
// Inserts a new key 'k'
void insertKey(int k)
{
if (heap_size == capacity)
{
Console.WriteLine("Overflow: Could not insertKey");
return;
}
// First insert the new key at the end
heap_size++;
int i = heap_size - 1;
harr[i] = k;
// Fix the min heap property
// if it is violated
while (i != 0 &&
harr[parent(i)] > harr[i])
{
swap(i, parent(i));
i = parent(i);
}
}
// A utility function to swap two elements
void swap(int x, int y)
{
int temp = harr[x];
harr[x] = harr[y];
harr[y] = temp;
}
// Driver code
public static void Main(String[] args)
{
MinHeap h = new MinHeap(15);
h.insertKey(3);
h.insertKey(2);
h.insertKey(15);
h.insertKey(5);
h.insertKey(4);
h.insertKey(45);
h.insertKey(80);
h.insertKey(6);
h.insertKey(150);
h.insertKey(77);
h.insertKey(120);
// Print all nodes smaller than 100.
int x = 100;
h.printSmallerThan(x, 0);
}
}
// This code is contributed by PrinciRaj1992
<script>
// A JavaScript program to print all values
// smaller than a given value in Binary
// Heap
// A class for Min Heap
class MinHeap {
// Constructor: Builds a heap of given size
constructor(capacity){
this.harr = new Array(capacity); // array of elements in heap
this.capacity = capacity; // maximum possible size of min heap
this.heap_size = 0; // Current no. of elements.
}
parent(i) { return parseInt((i - 1) / 2); }
left(i) { return (2 * i + 1); }
right(i) { return (2 * i + 2); }
// Function to print all elements smaller than k
printSmallerThan(x, pos)
{
/* Make sure item exists */
if (pos >= this.heap_size)
return;
if (this.harr[pos] >= x) {
/* Skip this node and its descendants,
as they are all >= x . */
return;
}
document.write(this.harr[pos] , " ");
this.printSmallerThan(x, this.left(pos));
this.printSmallerThan(x, this.right(pos));
}
// A utility function to swap two elements
swap(x, y)
{
let temp = this.harr[x];
this.harr[x] = this.harr[y];
this.harr[y] = temp;
}
// Inserts a new key 'k'
insertKey(k)
{
if (this.heap_size == this.capacity) {
System.out.println("Overflow: Could not insertKey");
return;
}
// First insert the new key at the end
this.heap_size++;
let i = this.heap_size - 1;
this.harr[i] = k;
// Fix the min heap property if it is violated
while (i != 0 && this.harr[this.parent(i)] > this.harr[i]) {
this.swap(i, this.parent(i));
i = this.parent(i);
}
}
}
// Driver code
let h = new MinHeap(15);
h.insertKey(3);
h.insertKey(2);
h.insertKey(15);
h.insertKey(5);
h.insertKey(4);
h.insertKey(45);
h.insertKey(80);
h.insertKey(6);
h.insertKey(150);
h.insertKey(77);
h.insertKey(120);
// Print all nodes smaller than 100.
let x = 100;
h.printSmallerThan(x, 0);
// This code is contributed by Shinjan Patra
</script>
Output
2 3 5 6 4 77 15 45 80
Time Complexity: O(n)
Auxiliary Space: O(1)