Bisect Algorithm Functions in Python
The bisect module in Python provides simple and fast (binary search based) functions to search an element in a sorted list, find the correct position to insert new elements, and insert new elements ensuring that the list remains sorted.
Why do we need Bisect Module ?
- Useful for binary search operations to search in a sorted list and to locate insertion points.
- Provides efficient methods to insert elements into a sorted list while maintaining order.
- Avoids the need for manual sorting after each insertion, saving time and effort.
- Offers functions like bisect(), bisect_left(), bisect_right() and insort() for clean optimized code.
- Ideal for tasks like maintaining leaderboards, ranked data or any scenario involving sorted data insertion/search.
Core Functions of Bisect Module
The bisect module mainly offers two types of functionalities:
- Finding the insertion point (without insertion)
- Inserting elements at the correct position
1. Finding Insertion Points
These functions return the index where the new element should be inserted to keep the list sorted.
a) bisect.bisect(): Returns the rightmost insertion point for the element. If the element already exists, the insertion point will be after the existing entries.
bisect.bisect(list, num, beg=0, end=len(list))
Parameter:
- list: Sorted list.
- num: Element to insert.
- beg: Start index for searching (optional).
- end: End index for searching (optional).
b) bisect.bisect_left(): Returns the leftmost insertion point for the element. If the element exists, the insertion point will be before the existing entries.
bisect.bisect_left(list, num, beg=0, end=len(list))
c) bisect.bisect_right(): Identical to bisect.bisect(), returns the rightmost insertion point.
bisect.bisect_right(list, num, beg=0, end=len(list))
Example: Find insertion indices for the value 4 in a sorted list using different bisect functions.
import bisect
li = [1, 3, 4, 4, 4, 6, 7]
print(bisect.bisect(li, 4)) # right
print(bisect.bisect_left(li, 4)) # left
print(bisect.bisect_right(li, 4, 0, 4)) # subright
Output
5 2 4
Explanation:
- bisect(li, 4): Returns 5 because it finds the rightmost position after the last 4 in the list (index 4), so the insertion point is 5.
- bisect_left(li, 4): Returns 2 because it finds the leftmost position before the first 4 in the list (index 2).
- bisect_right(li, 4, 0, 4): Works only on sublist li[0:4] and returns 4 because it inserts 4 after the last 4 in the sublist.
2. Inserting Elements
These functions insert the element at the proper position to maintain sorting.
a) bisect.insort(): Inserts the element at the rightmost position. Unlike bisect() functions, this actually modifies the list by inserting the element.
bisect.insort(list, num, beg=0, end=len(list))
Parameter:
- list: Sorted list.
- num: Element to insert.
- beg (optional): Start index for insertion (default 0).
- end (optional): End index for insertion (default len(list)).
b) bisect.insort_left(): Inserts the element at the leftmost position.
bisect.insort_left(list, num, beg=0, end=len(list))
c) bisect.insort_right(): Inserts the element at the rightmost position (similar to insort()).
bisect.insort_right(list, num, beg=0, end=len(list))
Example: Insert the value 5 into a sorted list while keeping it sorted, using different insertion strategies.
import bisect
l1 = [1, 3, 4, 4, 4, 6, 7]
l2 = [1, 3, 4, 4, 4, 6, 7]
l3 = [1, 3, 4, 4, 4, 6, 7]
bisect.insort(l1, 5) # right
print(l1)
bisect.insort_left(l2, 5) # left
print(l2)
bisect.insort_right(l3, 5, 0, 4) # subright
print(l3)
Output
[1, 3, 4, 4, 4, 5, 6, 7] [1, 3, 4, 4, 4, 5, 6, 7] [1, 3, 4, 4, 5, 4, 6, 7]
Explanation:
- insort(l1, 5) inserts 5 at the rightmost suitable position â after all 4s and before 6.
- insort_left(l2, 5) inserts 5 at the leftmost suitable position â same as insort here since 5 isn't in the list.
- insort_right(l3, 5, 0, 4) inserts 5 at index 4, working only on sublist l3[0:4] = [1, 3, 4, 4] after the last ⤠5 in that range, without affecting the rest of the list.