numpy.nanargmin() in Python
The numpy.nanargmin() function returns indices of the min element of the array in a particular axis ignoring NaNs.
The results cannot be trusted if a slice contains only NaNs and Infs.
Syntax:
numpy.nanargmin(array, axis = None)
Parameters :
array : Input array to work on axis : [int, optional]Along a specified axis like 0 or 1
Return :
Array of indices into the array with same shape as array.shape. with the dimension along axis removed.
Code 1 :
# Python Program illustrating
# working of nanargmin()
import numpy as geek
# Working on 1D array
array = [geek.nan, 4, 2, 3, 1]
print("INPUT ARRAY 1 : \n", array)
array2 = geek.array([[geek.nan, 4], [1, 3]])
# returning Indices of the min element
# as per the indices ingnoring NaN
print("\nIndices of min in array1 : ",
geek.nanargmin(array))
# Working on 2D array
print("\nINPUT ARRAY 2 : \n", array2)
print("\nIndices of min in array2 : ",
geek.nanargmin(array2))
print("\nIndices at axis 1 of array2 : ",
geek.nanargmin(array2, axis = 1))
Output :
INPUT ARRAY 1 : [nan, 4, 2, 3, 1] Indices of min in array1 : 4 INPUT ARRAY 2 : [[ nan 4.] [ 1. 3.]] Indices of min in array2 : 2 Indices at axis 1 of array2 : [1 0]
Code 2 : Comparing working of argmin and nanargmin
# Python Program illustrating
# working of nanargmin()
import numpy as geek
# Working on 2D array
array = ( [[ 8, 13, 5, 0],
[ geek.nan, geek.nan, 5, 3],
[10, 7, 15, 15],
[3, 11, 4, 12]])
print("INPUT ARRAY : \n", array)
# returning Indices of the min element
# as per the indices
'''
[[ 8 13 5 0]
[ 0 2 5 3]
[10 7 15 15]
[ 3 11 4 12]]
^ ^ ^ ^
0 2 4 0 - element
1 1 3 0 - indices
'''
print("\nIndices of min using argmin : ",
geek.argmin(array, axis = 0))
print("\nIndices of min using nanargmin : : ",
geek.nanargmin(array, axis = 0))
Output :
INPUT ARRAY : [[ 8 13 5 0] [ 0 2 5 3] [10 7 15 15] [ 3 11 4 12]] Indices of min element : [1 1 3 0]
Note :
These codes won't run on online IDE's. So please, run them on your systems to explore the working.