Numpy matrix.sort()
numpy.matrix.sort() is a method in NumPy sort the elements of a matrix along a specified axis. It returns a sorted copy of the matrix without changing the original matrix.
Example:
import numpy as np
m = np.matrix([[9, 2, 5], [6, 4, 1]])
sorted_m = m.sort(axis=1)
print(m)
Output
[[2 5 9] [1 4 6]]
Explanation: Each row is sorted independently.
Syntax
matrix.sort(axis=-1, kind='quicksort', order=None)
Parameters:
- axis: Direction to sort; default is 1 (last axis), 0 for columns, 1 for rows.
- kind: Sorting algorithm options include 'quicksort' (default), 'mergesort', 'heapsort', 'stable'.
- order: For structured arrays, sort.
Returns: A new sorted matrix (not in-place).
Examples
Example 1: Sort a matrix column-wise
import numpy as np
m = np.matrix([[3, 1], [2, 4]])
m.sort(axis=0)
print(m)
Output
[[2 1] [3 4]]
Explanation: Each column is sorted in ascending order.
Example 2: Using different sorting algorithms
import numpy as np
m = np.matrix([[5, 3, 1], [4, 2, 6]])
m.sort(axis=1, kind='mergesort')
print(m)
Output
[[1 3 5] [2 4 6]]
Explanation: The matrix is sorted row-wise using mergesort.