O componente BulkInferrer TFX Pipeline
Mantenha tudo organizado com as coleções
Salve e categorize o conteúdo com base nas suas preferências.
O componente BulkInferrer TFX realiza inferência em lote em dados não rotulados. O InferenceResult gerado ( tensorflow_serving.apis.prediction_log_pb2.PredictionLog ) contém os recursos originais e os resultados da previsão.
BulkInferrer consome:
- Um modelo treinado no formato SavedModel .
- tf.Exemplos não rotulados que contêm recursos.
- (Opcional) Resultado da validação do componente Avaliador .
BulkInferrer emite:
Usando o componente BulkInferrer
Um componente BulkInferrer TFX é usado para realizar inferência em lote em tf.Examples não rotulados. Geralmente é implantado após um componente Evaluator para realizar inferência com um modelo validado ou após um componente Trainer para realizar inferência diretamente no modelo exportado.
Atualmente realiza inferência de modelo na memória e inferência remota. A inferência remota requer que o modelo seja hospedado no Cloud AI Platform.
O código típico é assim:
bulk_inferrer = BulkInferrer(
examples=examples_gen.outputs['examples'],
model=trainer.outputs['model'],
model_blessing=evaluator.outputs['blessing'],
data_spec=bulk_inferrer_pb2.DataSpec(),
model_spec=bulk_inferrer_pb2.ModelSpec()
)
Mais detalhes estão disponíveis na referência da API BulkInferrer .
Exceto em caso de indicação contrária, o conteúdo desta página é licenciado de acordo com a Licença de atribuição 4.0 do Creative Commons, e as amostras de código são licenciadas de acordo com a Licença Apache 2.0. Para mais detalhes, consulte as políticas do site do Google Developers. Java é uma marca registrada da Oracle e/ou afiliadas.
Última atualização 2023-10-31 UTC.
[[["Fácil de entender","easyToUnderstand","thumb-up"],["Meu problema foi resolvido","solvedMyProblem","thumb-up"],["Outro","otherUp","thumb-up"]],[["Não contém as informações de que eu preciso","missingTheInformationINeed","thumb-down"],["Muito complicado / etapas demais","tooComplicatedTooManySteps","thumb-down"],["Desatualizado","outOfDate","thumb-down"],["Problema na tradução","translationIssue","thumb-down"],["Problema com as amostras / o código","samplesCodeIssue","thumb-down"],["Outro","otherDown","thumb-down"]],["Última atualização 2023-10-31 UTC."],[],[],null,["# The BulkInferrer TFX Pipeline Component\n\n\u003cbr /\u003e\n\nThe BulkInferrer TFX component performs batch inference on unlabeled data. The\ngenerated\nInferenceResult([tensorflow_serving.apis.prediction_log_pb2.PredictionLog](https://github.com/tensorflow/serving/blob/master/tensorflow_serving/apis/prediction_log.proto))\ncontains the original features and the prediction results.\n\nBulkInferrer consumes:\n\n- A trained model in [SavedModel](https://www.tensorflow.org/guide/saved_model.md) format.\n- Unlabelled tf.Examples that contain features.\n- (Optional) Validation result from [Evaluator](https://www.tensorflow.org/tfx/guide/evaluator.md) component.\n\nBulkInferrer emits:\n\n- [InferenceResult](https://github.com/tensorflow/tfx/blob/master/tfx/types/standard_artifacts.py)\n\nUsing the BulkInferrer Component\n--------------------------------\n\nA BulkInferrer TFX component is used to perform batch inference on unlabeled\ntf.Examples. It is typically deployed after an\n[Evaluator](https://www.tensorflow.org/tfx/guide/evaluator.md) component to\nperform inference with a validated model, or after a\n[Trainer](https://www.tensorflow.org/tfx/guide/trainer.md) component to directly\nperform inference on exported model.\n\nIt currently performs in-memory model inference and remote inference.\nRemote inference requires the model to be hosted on Cloud AI Platform.\n\nTypical code looks like this: \n\n bulk_inferrer = BulkInferrer(\n examples=examples_gen.outputs['examples'],\n model=trainer.outputs['model'],\n model_blessing=evaluator.outputs['blessing'],\n data_spec=bulk_inferrer_pb2.DataSpec(),\n model_spec=bulk_inferrer_pb2.ModelSpec()\n )\n\nMore details are available in the\n[BulkInferrer API reference](https://www.tensorflow.org/tfx/api_docs/python/tfx/v1/components/BulkInferrer)."]]