PostgreSQL 適用的 AlloyDB 說明文件
AlloyDB 是與 PostgreSQL 相容的全代管資料庫,適用於要求嚴苛的交易工作負載。可提供企業級效能與可用性,並與開放原始碼的 PostgreSQL 完全相容。
不確定哪種資料庫選項適合您嗎?進一步瞭解我們的資料庫服務。
進一步瞭解 AlloyDB。
使用價值 $300 美元的免費抵免額,開始進行概念驗證
-
取得 Gemini 2.0 Flash Thinking 的存取權
-
每月免費使用 AI API 和 BigQuery 等熱門產品
-
不會自動收費,也不會要求您一定要購買特定方案
繼續探索超過 20 項一律免費的產品
使用超過 20 項實用的免費產品,包括 AI API、VM 和 data warehouse 等。
訓練
訓練與教學課程
AlloyDB AI 嵌入研究室
透過實作練習,瞭解如何使用 AlloyDB 建立及使用向量嵌入。本程式碼研究室將逐步說明如何設定 AlloyDB 叢集、與 Vertex AI 整合,然後將生成模型套用至資料查詢。
107 分鐘
入門
免費
訓練
訓練與教學課程
使用 AlloyDB PG_Vector 進行語意搜尋
本實驗室將逐步說明如何建構語意搜尋網路應用程式,透過 AlloyDB 向量搜尋功能搜尋電影劇情摘要,找出電影和類似電影。您必須登入 Google Cloud Qwiklabs,才能存取本實驗室。
135 分鐘
入門
免費
用途
用途
白皮書:適用於 PostgreSQL 的 AlloyDB 專用 ScaNN
說明 ScaNN for AlloyDB for PostgreSQL 如何提升效能及減少記憶體用量。
ScaNN
向量搜尋
向量嵌入
向量索引
用途
用途
調整 ScaNN 索引的最佳做法
提供有關如何調整索引參數的建議,在召回率和每秒查詢次數之間取得最佳平衡。
ScaNN
最佳化
除非另有註明,否則本頁面中的內容是採用創用 CC 姓名標示 4.0 授權,程式碼範例則為阿帕契 2.0 授權。詳情請參閱《Google Developers 網站政策》。Java 是 Oracle 和/或其關聯企業的註冊商標。
上次更新時間:2025-08-25 (世界標準時間)。
[[["容易理解","easyToUnderstand","thumb-up"],["確實解決了我的問題","solvedMyProblem","thumb-up"],["其他","otherUp","thumb-up"]],[["難以理解","hardToUnderstand","thumb-down"],["資訊或程式碼範例有誤","incorrectInformationOrSampleCode","thumb-down"],["缺少我需要的資訊/範例","missingTheInformationSamplesINeed","thumb-down"],["翻譯問題","translationIssue","thumb-down"],["其他","otherDown","thumb-down"]],["上次更新時間:2025-08-25 (世界標準時間)。"],[[["\u003cp\u003eAlloyDB for PostgreSQL is a fully-managed, PostgreSQL-compatible database designed for demanding transactional workloads, providing enterprise-grade performance and availability.\u003c/p\u003e\n"],["\u003cp\u003eAlloyDB offers 100% compatibility with open-source PostgreSQL, allowing seamless integration with existing PostgreSQL tools and applications.\u003c/p\u003e\n"],["\u003cp\u003eAlloyDB AI enables building generative AI applications, performing vector searches, and integrating with Vertex AI, expanding the database's capabilities beyond traditional workloads.\u003c/p\u003e\n"],["\u003cp\u003eComprehensive resources, including quickstarts, guides, reference materials, and training labs, are available to help users get started and optimize their use of AlloyDB.\u003c/p\u003e\n"],["\u003cp\u003eUsers can leverage features like the columnar engine to accelerate queries and Query Insights to analyze performance, improving the overall efficiency and effectiveness of their database operations.\u003c/p\u003e\n"]]],[],null,["# AlloyDB for PostgreSQL documentation\n====================================\n\n[Read product documentation](/alloydb/docs/overview) AlloyDB is a fully-managed, PostgreSQL-compatible database for demanding\ntransactional workloads. It provides enterprise-grade performance and availability\nwhile maintaining 100% compatibility with open-source PostgreSQL.\n\nNot sure what database option is right for you? Learn more about\nour [database services](/products/databases).\n\n[Learn more](/alloydb/docs/overview) about AlloyDB.\n[Get started for free](https://console.cloud.google.com/freetrial) \n\n#### Start your proof of concept with $300 in free credit\n\n- Get access to Gemini 2.0 Flash Thinking\n- Free monthly usage of popular products, including AI APIs and BigQuery\n- No automatic charges, no commitment \n[View free product offers](/free/docs/free-cloud-features#free-tier) \n\n#### Keep exploring with 20+ always-free products\n\n\nAccess 20+ free products for common use cases, including AI APIs, VMs, data warehouses,\nand more.\n\nDocumentation resources\n-----------------------\n\nFind quickstarts and guides, review key references, and get help with common issues. \nfollow_the_signs\n\n### Get started\n\n-\n\n [AlloyDB overview](/alloydb/docs/overview)\n\n-\n\n [AlloyDB AI tutorials, codelabs, and notebooks](/alloydb/docs/ai/alloydb-ai-use-cases)\n\n-\n\n [Create and connect to a database](/alloydb/docs/quickstart/create-and-connect)\n\n-\n\n [Connect from Google Kubernetes Engine (GKE) to AlloyDB](/alloydb/docs/quickstart/integrate-kubernetes)\n\n-\n\n [Grant AlloyDB access to other users](/alloydb/docs/user-grant-access)\n\n-\n\n [Perform a vector search](/alloydb/docs/ai/perform-vector-search)\n\n-\n\n [Integrate AlloyDB with Vertex AI](/alloydb/docs/ai/configure-vertex-ai)\n\nformat_list_numbered\n\n### Guides\n\n-\n\n [Accelerate queries using the columnar engine](/alloydb/docs/columnar-engine/about)\n\n-\n\n [Analyze performance using Query Insights](/alloydb/docs/query-insights-overview)\n\n-\n\n [Build generative AI applications using AlloyDB AI](/alloydb/docs/ai)\n\n-\n\n [Connect a psql client](/alloydb/docs/connect-psql)\n\n-\n\n [Connect securely using the Auth proxy](/alloydb/docs/auth-proxy/overview)\n\n-\n\n [Create a read pool instance](/alloydb/docs/instance-read-pool-create)\n\n-\n\n [Scale an instance](/alloydb/docs/instance-read-pool-scale)\n\n-\n\n [Configure backup plans](/alloydb/docs/backup/configure)\n\ngroup_work\n\n### Reference \\& Resources\n\n-\n\n [gcloud CLI reference](/sdk/gcloud/reference/beta/alloydb)\n\n-\n\n [IAM roles and permissions](/alloydb/docs/reference/iam-roles-permissions)\n\n-\n\n [Locations](/alloydb/docs/locations)\n\n-\n\n [Pricing](/alloydb/pricing)\n\n-\n\n [Quotas and limits](/alloydb/quotas)\n\n-\n\n [Release notes](/alloydb/docs/release-notes)\n\n-\n\n [REST API reference](/alloydb/docs/reference/rest)\n\n-\n\n [Supported database flags](/alloydb/docs/reference/database-flags)\n\nRelated resources\n-----------------\n\nTraining and tutorials \nUse cases \nExplore self-paced training, use cases, reference architectures, and code samples with examples of how to use and connect Google Cloud services. Training \nTraining and tutorials\n\n### AlloyDB AI Embedding lab\n\n\nGet hands-on practice with creating and using vector embeddings using AlloyDB. This codelab guides you through setting up an AlloyDB cluster, integrating it with Vertex AI, and then applying a generative model to data queries.\n\n\n107 minutes Introductory Free\n\n\u003cbr /\u003e\n\n[Learn more](https://codelabs.developers.google.com/codelabs/alloydb-ai-embedding) \nTraining \nTraining and tutorials\n\n### Semantic search with AlloyDB PG_Vector\n\n\nThis lab walks you through building a semantic search web application for searching through movie plot summaries using AlloyDB vector search to find movies and similar movies. Signing in to Google Cloud Qwiklabs is required to access this lab.\n\n\n135 minutes Introductory Free\n\n\u003cbr /\u003e\n\n[Learn more](https://explore.qwiklabs.com/focuses/7136?parent=catalog) \nUse case \nUse cases\n\n### Whitepaper: ScaNN for AlloyDB for PostgreSQL\n\n\nExplains how ScaNN for AlloyDB for PostgreSQL achieves faster performance and improves memory footprint.\n\nScaNN vector search vector embeddings vector indexing\n\n\u003cbr /\u003e\n\n[Learn more](https://services.google.com/fh/files/misc/scann_for_alloydb_whitepaper.pdf) \nUse case \nUse cases\n\n### Best practices for tuning ScaNN indexes\n\n\nProvides recommendations about how to tune index parameters for optimal balance between recall and QPS.\n\nScaNN optimization\n\n\u003cbr /\u003e\n\n[Learn more](/alloydb/docs/ai/best-practices-tuning-scann)\n\nRelated videos\n--------------"]]