documentación de BigQuery
BigQuery es el almacén de datos de estadísticas rentable, a escala de petabytes y completamente administrado de Google Cloudque te permite ejecutar estadísticas en grandes cantidades de datos casi en tiempo real. Con BigQuery, no debes configurar ni administrar ninguna infraestructura, lo que te permite enfocarte en encontrar estadísticas significativas mediante GoogleSQL y aprovechar los modelos de precios flexibles en las opciones a pedido y de tasa fija.
Más información
Comienza tu prueba de concepto con un crédito gratis de USD 300
-
Obtén acceso a Gemini 2.0 Flash Thinking
-
Uso mensual gratuito de productos populares, incluidas las APIs de IA y BigQuery
-
Sin cargos automáticos ni compromisos
Sigue explorando con más de 20 productos siempre gratuitos
Accede a más de 20 productos gratuitos para casos de uso comunes, incluidas APIs de IA, VMs, almacenes de datos y mucho más.
Capacitación
Instructivos y entrenamiento
Almacén de datos con la soluciones de inicio rápido de BigQuery
Implementa y usa un almacén de datos de muestra con BigQuery.
Capacitación
Instructivos y entrenamiento
BigQuery para almacenamiento de datos
Descubre las prácticas recomendadas para extraer, transformar y cargar tus datos en Google Cloud con BigQuery.
Capacitación
Instructivos y entrenamiento
Procesa previamente datos de BigQuery con PySpark en Dataproc
Aprende a crear una canalización de procesamiento de datos con Apache Spark y Dataproc en Google Cloud. Es un caso de uso común en la ciencia y la ingeniería de datos para leerlos desde una ubicación de almacenamiento, realizar transformaciones y escribirlos en otra ubicación de almacenamiento.
Capacitación
Instructivos y entrenamiento
BigQuery For Data Analysis
Aprende a consultar, transferir, optimizar, visualizar y hasta compilar modelos de aprendizaje automático en SQL dentro de BigQuery.
Capacitación
Instructivos y entrenamiento
BigQuery for Marketing Analysts
Aprenda a consultar sus datos mediante BigQuery para obtener información repetible, escalable y valiosa.
Capacitación
Instructivos y entrenamiento
BigQuery for Machine Learning
Experimenta con diferentes tipos de modelos en BigQuery Machine Learning y descubre cuáles son las características de un buen modelo.
Caso de uso
Casos de uso
Migra almacenes de datos a BigQuery
Obtén más información sobre los patrones y las recomendaciones para migrar tu almacén de datos local a BigQuery.
Migración
Patrones
BigQuery
Caso de uso
Casos de uso
Visualiza datos de BigQuery en un notebook de Jupyter
Usa la biblioteca cliente de Python de BigQuery y Pandas en un notebook de Jupyter para visualizar los datos en una tabla de muestra de BigQuery
Muestra de código
Muestras de código
Clientes: crea credenciales con permisos
Crea credenciales con permisos de las API de BigQuery y Drive.
Muestra de código
Muestras de código
Cliente: crea credenciales predeterminadas de la aplicación
Crea un cliente de BigQuery con las credenciales predeterminadas de la aplicación.
Muestra de código
Muestras de código
Cliente: Crea con la clave de la cuenta de servicio
Crea un cliente de BigQuery con un archivo de claves de cuenta de servicio.
Muestra de código
Muestras de código
Muestras de Python
Trabaja con BigQuery con la biblioteca cliente de Python para Google Cloud.
Muestra de código
Muestras de código
Muestras de Node.js
Muestras de la biblioteca cliente de Node.js para BigQuery
Muestra de código
Muestras de código
Muestra simple de C#
Un programa simple de C# y fragmentos de código para interactuar con BigQuery
Muestra de código
Muestras de código
BigQuery y Cloud Monitoring en App Engine con Java 8
En esta presentación de la API, se muestra cómo ejecutar una aplicación del entorno estándar de App Engine con dependencias en BigQuery y Cloud Monitoring.
Muestra de código
Muestras de código
Todas las muestras
Explora todas las muestras de BigQuery
Salvo que se indique lo contrario, el contenido de esta página está sujeto a la licencia Atribución 4.0 de Creative Commons, y los ejemplos de código están sujetos a la licencia Apache 2.0. Para obtener más información, consulta las políticas del sitio de Google Developers. Java es una marca registrada de Oracle o sus afiliados.
Última actualización: 2025-08-17 (UTC)
[[["Fácil de comprender","easyToUnderstand","thumb-up"],["Resolvió mi problema","solvedMyProblem","thumb-up"],["Otro","otherUp","thumb-up"]],[["Difícil de entender","hardToUnderstand","thumb-down"],["Información o código de muestra incorrectos","incorrectInformationOrSampleCode","thumb-down"],["Faltan la información o los ejemplos que necesito","missingTheInformationSamplesINeed","thumb-down"],["Problema de traducción","translationIssue","thumb-down"],["Otro","otherDown","thumb-down"]],["Última actualización: 2025-08-17 (UTC)"],[[["\u003cp\u003eBigQuery is a fully managed, petabyte-scale data warehouse service by Google Cloud, designed for running real-time analytics on massive datasets.\u003c/p\u003e\n"],["\u003cp\u003eIt offers flexible pricing models, including on-demand and flat-rate options, allowing users to optimize costs based on their needs.\u003c/p\u003e\n"],["\u003cp\u003eBigQuery provides comprehensive documentation and guides for various tasks, including quickstarts, table management, data loading, and machine learning integration.\u003c/p\u003e\n"],["\u003cp\u003eResources are available for users, covering topics like pricing, release notes, locations, cost control, troubleshooting, and support.\u003c/p\u003e\n"],["\u003cp\u003eTraining, use cases, and code samples are provided to assist users with data warehousing, data analysis, machine learning, and migrating data warehouses to BigQuery, along with showcasing code for various client-side integrations.\u003c/p\u003e\n"]]],[],null,["# BigQuery documentation\n======================\n\n[Read product documentation](/bigquery/docs/introduction)\nBigQuery is Google Cloud's fully managed, petabyte-scale, and\ncost-effective analytics data warehouse that lets you run analytics over\nvast amounts of data in near real time. With BigQuery, there's\nno infrastructure to set up or manage, letting you focus on finding meaningful\ninsights using GoogleSQL and taking advantage of flexible pricing models\nacross on-demand and flat-rate options.\n[Learn more](/bigquery/docs/introduction)\n[Get started for free](https://console.cloud.google.com/freetrial) \n\n#### Start your proof of concept with $300 in free credit\n\n- Get access to Gemini 2.0 Flash Thinking\n- Free monthly usage of popular products, including AI APIs and BigQuery\n- No automatic charges, no commitment \n[View free product offers](/free/docs/free-cloud-features#free-tier) \n\n#### Keep exploring with 20+ always-free products\n\n\nAccess 20+ free products for common use cases, including AI APIs, VMs, data warehouses,\nand more.\n\nDocumentation resources\n-----------------------\n\nFind quickstarts and guides, review key references, and get help with common issues. \nformat_list_numbered\n\n### Guides\n\n-\n\n\n Quickstarts:\n [Console](/bigquery/docs/quickstarts/query-public-dataset-console),\n\n [Command line](/bigquery/docs/quickstarts/load-data-bq),\n or\n [Client libraries](/bigquery/docs/quickstarts/quickstart-client-libraries)\n\n\n-\n\n [Creating and using tables](/bigquery/docs/tables)\n\n-\n\n [Introduction to partitioned tables](/bigquery/docs/partitioned-tables)\n\n-\n\n [Introduction to BigQuery ML](/bigquery/docs/bqml-introduction)\n\n-\n\n [Predefined roles and permissions](/bigquery/docs/access-control)\n\n-\n\n [Introduction to loading data](/bigquery/docs/loading-data)\n\n-\n\n [Loading CSV data from Cloud Storage](/bigquery/docs/loading-data-cloud-storage-csv)\n\n-\n\n [Exporting table data](/bigquery/docs/exporting-data)\n\n-\n\n [Create machine learning models in BigQuery ML](/bigquery/docs/create-machine-learning-model)\n\n-\n\n [Querying external data sources](/bigquery/external-data-sources)\n\n-\n\n [Introduction to vector search](/bigquery/docs/vector-search-intro)\n\nfind_in_page\n\n### Reference\n\n-\n\n [Functions in GoogleSQL](/bigquery/docs/reference/standard-sql/functions-all)\n\n-\n\n [Operators in GoogleSQL](/bigquery/docs/reference/standard-sql/operators)\n\n-\n\n [Conditional expressions in GoogleSQL](/bigquery/docs/reference/standard-sql/conditional_expressions)\n\n-\n\n [Date functions in GoogleSQL](/bigquery/docs/reference/standard-sql/date_functions)\n\n-\n\n [Query syntax in GoogleSQL](/bigquery/docs/reference/standard-sql/query-syntax)\n\n-\n\n [String functions in GoogleSQL](/bigquery/docs/reference/standard-sql/string_functions)\n\n-\n\n [Using the bq command-line tool](/bigquery/docs/bq-command-line-tool)\n\n-\n\n [End-to-end journey for machine learning models](/bigquery/docs/reference/standard-sql/bigqueryml-syntax-e2e-journey)\n\n-\n\n [BigQuery API Client Libraries](/bigquery/docs/reference/libraries)\n\n-\n\n [Creating and training models](/bigquery/docs/reference/standard-sql/bigqueryml-syntax-create)\n\n-\n\n [Public datasets](/bigquery/public-data)\n\n-\n\n [Feature preprocessing](/bigquery/docs/reference/standard-sql/bigqueryml-syntax-preprocess-overview)\n\ninfo\n\n### Resources\n\n-\n\n [Pricing](/bigquery/pricing)\n\n-\n\n [Release notes](/bigquery/docs/release-notes)\n\n-\n\n [Locations](/bigquery/docs/locations)\n\n-\n\n [Getting support](/bigquery/docs/getting-support)\n\n-\n\n [Quotas and limits](/bigquery/quotas)\n\n-\n\n [Controlling costs](/bigquery/docs/controlling-costs)\n\n-\n\n [Creating custom cost controls](/bigquery/docs/custom-quotas)\n\n-\n\n [Troubleshooting BigQuery quota errors](/bigquery/docs/troubleshoot-quotas)\n\n-\n\n [Billing questions](/bigquery/docs/billing-questions)\n\nRelated resources\n-----------------\n\nTraining and tutorials \nUse cases \nCode samples \nExplore self-paced training, use cases, reference architectures, and code samples with examples of how to use and connect Google Cloud services. Training \nTraining and tutorials\n\n### Data Warehouse with BigQuery Jump Start Solution\n\n\nDeploy and use a sample data warehouse with BigQuery.\n\n\n[Learn more](https://cloud.google.com/architecture/big-data-analytics/data-warehouse) \nTraining \nTraining and tutorials\n\n### BigQuery for Data Warehousing\n\n\nLearn best practices for extracting, transforming, and loading your data into Google Cloud with BigQuery.\n\n\n[Learn more](https://www.cloudskillsboost.google/course_templates/679) \nTraining \nTraining and tutorials\n\n### Preprocessing BigQuery Data with PySpark on Dataproc\n\n\nLearn to create a data processing pipeline using Apache Spark with Dataproc on Google Cloud. It is a common use case in data science and data engineering to read data from one storage location, perform transformations on it and write it into another storage location.\n\n\n[Learn more](https://codelabs.developers.google.com/codelabs/pyspark-bigquery/) \nTraining \nTraining and tutorials\n\n### BigQuery For Data Analysis\n\n\nLearn how to query, ingest, optimize, visualize, and even build machine learning models in SQL inside of BigQuery.\n\n\n[Learn more](https://www.cloudskillsboost.google/course_templates/865) \nTraining \nTraining and tutorials\n\n### BigQuery for Marketing Analysts\n\n\nGet repeatable, scalable, and valuable insights into your data by learning how to query it using BigQuery.\n\n\n[Learn more](https://www.cloudskillsboost.google/course_templates/678) \nTraining \nTraining and tutorials\n\n### BigQuery for Machine Learning\n\n\nExperiment with different model types in BigQuery Machine Learning, and learn what makes a good model.\n\n\n[Learn more](https://www.cloudskillsboost.google/course_templates/680) \nUse case \nUse cases\n\n### Migrating data warehouses to BigQuery\n\n\nLearn patterns and recommendations for transitioning your on-premises data warehouse to BigQuery.\n\nMigration Patterns BigQuery\n\n\u003cbr /\u003e\n\n[Learn more](/solutions/migration/dw2bq/dw-bq-migration-overview) \nUse case \nUse cases\n\n### Visualizing BigQuery data in a Jupyter notebook\n\n\nUse the BigQuery Python client library and Pandas in a Jupyter notebook to visualize data in a BigQuery sample table.\n\n\n[Learn more](/bigquery/docs/visualize-jupyter) \nCode sample \nCode Samples\n\n### Client: Create credentials with scopes\n\n\nCreate credentials with Drive and BigQuery API scopes.\n\n\n[Get started](/bigquery/docs/samples/bigquery-auth-drive-scope) \nCode sample \nCode Samples\n\n### Client: Create credentials with application default credentials\n\n\nCreate a BigQuery client using application default credentials.\n\n\n[Get started](/bigquery/docs/samples/bigquery-client-default-credentials) \nCode sample \nCode Samples\n\n### Client: Create with service account key\n\n\nCreate a BigQuery client using a service account key file.\n\n\n[Get started](/bigquery/docs/samples/bigquery-client-json-credentials) \nCode sample \nCode Samples\n\n### Python samples\n\n\nWorking with BigQuery with the Google Cloud Python client library\n\n\n[Open GitHub\narrow_forward](https://github.com/googleapis/python-bigquery/tree/main/samples) \nCode sample \nCode Samples\n\n### Node.js samples\n\n\nSamples for the Node.js client library sfor BigQuery\n\n\n[Open GitHub\narrow_forward](https://github.com/googleapis/nodejs-bigquery/tree/main/samples) \nCode sample \nCode Samples\n\n### C# simple sample\n\n\nA simple C# program and code snippets for interacting with BigQuery\n\n\n[Open GitHub\narrow_forward](https://github.com/GoogleCloudPlatform/dotnet-docs-samples/tree/master/bigquery/api) \nCode sample \nCode Samples\n\n### BigQuery and Cloud Monitoring on App Engine with Java 8\n\n\nThis API Showcase demonstrates how to run an App Engine standard environment application with dependencies on both BigQuery and Cloud Monitoring.\n\n\n[Open GitHub\narrow_forward](https://github.com/GoogleCloudPlatform/java-docs-samples/tree/main/appengine-java8/bigquery) \nCode sample \nCode Samples\n\n### All samples\n\n\nBrowse all samples for BigQuery\n\n\n[Get started](/bigquery/docs/samples)\n\nRelated videos\n--------------\n\n### Try BigQuery for yourself\n\nCreate an account to evaluate how our products perform in real-world scenarios. \nNew customers also get $300 in free credits to run, test, and deploy workloads. \n[Try BigQuery free](https://console.cloud.google.com/freetrial)"]]