Descripción general de los contenedores de aprendizaje profundo
Organiza tus páginas con colecciones
Guarda y categoriza el contenido según tus preferencias.
Los contenedores de aprendizaje profundo son un conjunto de contenedores de Docker que tienen preinstalados herramientas, bibliotecas y frameworks clave de ciencia de datos.
Estos contenedores te brindan entornos coherentes y optimizados para el rendimiento que pueden ayudarte a crear prototios e implementar rápidamente flujos de trabajo.
Las imágenes de los contenedores de aprendizaje profundo se pueden configurar para que incluyan lo siguiente:
Frameworks:
TensorFlow
PyTorch
R
scikit-learn
XGBoost
Python, incluidos estos paquetes:
numpy
sklearn
scipy
pandas
nltk
almohada
Indicadores de equidad para instancias de contenedores de aprendizaje profundo de TensorFlow 2.3 y 2.4
entre otros
Paquetes de Nvidia con el último controlador de Nvidia para instancias habilitadas para GPU:
CUDA 10.*, 11.* y 12.* (la versión depende del framework)
CuDNN 7.* and NCCL 2.* (la versión depende de la versión de CUDA)
JupyterLab
Contenedores de Model Garden
Biblioteca de vLLM
Asistencia de la comunidad
Haz una pregunta sobre los contenedores de aprendizaje profundo en Stack Overflow o únete al grupo de Google google-dl-platform para debatir sobre los contenedores de aprendizaje profundo.
Puedes comenzar a usar los contenedores de aprendizaje profundo mediante las guías prácticas, que proporcionan instrucciones para crear y trabajar con contenedores de aprendizaje profundo.
[[["Fácil de comprender","easyToUnderstand","thumb-up"],["Resolvió mi problema","solvedMyProblem","thumb-up"],["Otro","otherUp","thumb-up"]],[["Difícil de entender","hardToUnderstand","thumb-down"],["Información o código de muestra incorrectos","incorrectInformationOrSampleCode","thumb-down"],["Faltan la información o los ejemplos que necesito","missingTheInformationSamplesINeed","thumb-down"],["Problema de traducción","translationIssue","thumb-down"],["Otro","otherDown","thumb-down"]],["Última actualización: 2025-09-04 (UTC)"],[[["\u003cp\u003eDeep Learning Containers are Docker containers that come pre-installed with essential data science frameworks, libraries, and tools.\u003c/p\u003e\n"],["\u003cp\u003eThese containers are designed to offer consistent, performance-optimized environments to accelerate the prototyping and implementation of workflows.\u003c/p\u003e\n"],["\u003cp\u003ePre-installed software includes frameworks like TensorFlow, PyTorch, R, scikit-learn, XGBoost, as well as various Python packages and Nvidia packages.\u003c/p\u003e\n"],["\u003cp\u003eDeep Learning Containers also include Hugging Face frameworks and libraries such as the Text Generation Inference toolkit, and the Transformers library.\u003c/p\u003e\n"],["\u003cp\u003eCommunity support is available via Stack Overflow or the google-dl-platform Google group for questions and discussions about Deep Learning Containers.\u003c/p\u003e\n"]]],[],null,["# Deep Learning Containers overview\n\nDeep Learning Containers are a set of Docker containers\nwith key data science frameworks, libraries, and tools pre-installed.\nThese containers provide you with performance-optimized, consistent\nenvironments that can help you prototype and implement workflows quickly.\n\nTo learn\nmore about containers, see [Containers at Google](/containers).\n\nPre-installed software\n----------------------\n\nDeep Learning Containers images can be configured to include the following:\n\n- Frameworks:\n\n - TensorFlow\n - PyTorch\n - R\n - scikit-learn\n - XGBoost\n- Python, including these packages:\n\n - numpy\n - sklearn\n - scipy\n - pandas\n - nltk\n - pillow\n - [fairness-indicators](https://www.tensorflow.org/responsible_ai/fairness_indicators/guide) for TensorFlow 2.3 and 2.4 Deep Learning Containers instances\n - many others\n- Nvidia packages with the latest Nvidia driver for GPU-enabled instances:\n\n - CUDA 10.\\*, 11.\\*, and 12.\\* (the version depends on the framework)\n - CuDNN 7.\\* and NCCL 2.\\* (the version depends on the CUDA version)\n- JupyterLab\n\n- Model Garden containers\n\n - vLLM library\n\nCommunity support\n-----------------\n\nAsk a question about Deep Learning Containers on [Stack\nOverflow](https://stackoverflow.com/questions/tagged/google-dl-platform)\nor join the\n[google-dl-platform](https://groups.google.com/forum/#!forum/google-dl-platform)\nGoogle group to discuss Deep Learning Containers.\n\n[Learn more about getting support from the\ncommunity](/deep-learning-containers/docs/getting-support#get_support_from_the_community).\n\nWhat's next\n-----------\n\nYou can get started with Deep Learning Containers by walking through\nthe [How-to guides](/deep-learning-containers/docs#how-to),\nwhich provide instructions on create and work with deep learning containers."]]