Vertex AI がアクセスできるソースにトレーニング データと検証データを格納します。認証を簡素化してレイテンシを減らすには、データを Cloud Storage、Bigtable、または Vertex AI で使用しているのと同じ Google Cloud プロジェクトとリージョンにある別のGoogle Cloud ストレージ サービスに保存します。Vertex AI によるデータの読み込み方法をご確認ください。
任意の ML フレームワークを使用できます。使用したい ML フレームワークの Vertex AI ビルド済みコンテナが見つからない場合は、目的のフレームワークでカスタム コンテナをビルドし、それを使用して Vertex AI でジョブを実行できます。たとえば、PyTorch でトレーニングするためのカスタム コンテナを使用できます。
分散トレーニングがサポートされます。カスタム コンテナでは、任意の ML フレームワークを使用して分散トレーニングを行うことができます。
Vertex AI 上でハイパーパラメータ調整を行うには、目標指標を指定し、各指標を最小化または最大化するかどうかを指定します。たとえば、モデル精度を最大化する必要がある場合もあれば、モデル損失を最小化する必要がある場合もあります。また、調整するハイパーパラメータと各ハイパーパラメータの許容値の範囲もリストにします。Vertex AI ではトレーニング アプリケーションのトライアルを複数回行い、トライアルが完了するたびにハイパーパラメータを追跡して調整します。ハイパーパラメータ調整ジョブが完了すると、Vertex AI は、ハイパーパラメータを最も効果的に構成するための値と、各トライアルのサマリーを報告します。
[[["わかりやすい","easyToUnderstand","thumb-up"],["問題の解決に役立った","solvedMyProblem","thumb-up"],["その他","otherUp","thumb-up"]],[["わかりにくい","hardToUnderstand","thumb-down"],["情報またはサンプルコードが不正確","incorrectInformationOrSampleCode","thumb-down"],["必要な情報 / サンプルがない","missingTheInformationSamplesINeed","thumb-down"],["翻訳に関する問題","translationIssue","thumb-down"],["その他","otherDown","thumb-down"]],["最終更新日 2025-09-02 UTC。"],[],[],null,["# Custom containers overview\n\nA custom container is a Docker image that you create to run\nyour training application. By running your machine learning (ML) training job\nin a *custom container*, you can use ML frameworks, non-ML dependencies,\nlibraries, and binaries that are not otherwise supported\non Vertex AI.\n\nHow training with containers works\n----------------------------------\n\nYour training application, implemented in the ML framework of your choice,\nis the core of the training process.\n\n1. Create an application that trains your model, using the ML framework\n of your choice.\n\n2. Decide whether to use a custom container. There could be a\n [prebuilt container](/vertex-ai/docs/training/pre-built-containers) that already supports\n your dependencies. Otherwise, you need to [build a custom container for\n your training job](/vertex-ai/docs/training/create-custom-container). In your custom container, you\n pre-install your training application and all its dependencies onto an\n image that is used to run your training job.\n\n3. Store your training and verification data in a source that\n Vertex AI can access. To simplify authentication and reduce\n latency, store your data in Cloud Storage, Bigtable, or another\n Google Cloud storage service in the same Google Cloud project\n and region that you are using for Vertex AI. Learn more about\n [the ways Vertex AI can load your data](/vertex-ai/docs/training/code-requirements#loading-data).\n\n4. When your application is ready to run, you must build your Docker image and\n push it to Artifact Registry or Docker Hub, making sure that\n [Vertex AI can access your registry](/vertex-ai/docs/training/create-custom-container#manage-container-registry-permissions).\n\n5. Submit your custom training job by [creating a custom\n job](/vertex-ai/docs/training/create-custom-job) or [creating a custom training\n pipeline](/vertex-ai/docs/training/create-training-pipeline).\n\n6. Vertex AI sets up resources for your job. It allocates one or\n more virtual machines (called *training instances* ) based on your job\n configuration. You set up a training instance by using the custom container\n you specify as part of the [`WorkerPoolSpec`](/vertex-ai/docs/reference/rest/v1/CustomJobSpec#workerpoolspec) object when\n you [submit your custom training\n job](/vertex-ai/docs/training/create-custom-job).\n\n7. Vertex AI runs your Docker image, passing through any\n command-line arguments you specify when you create the training job.\n\n8. When your training job succeeds or encounters an unrecoverable error,\n Vertex AI halts all job processes and cleans up the\n resources.\n\nAdvantages of custom containers\n-------------------------------\n\nCustom containers let you specify and pre-install all the dependencies\nneeded for your application.\n\n- **Faster start-up time.** If you use a custom container with your dependencies pre-installed, you can save the time that your training application would otherwise take to install dependencies when starting up.\n- **Use the ML framework of your choice.** If you can't find an Vertex AI prebuilt container with the ML framework you want to use, you can build a custom container with your chosen framework and use it to run jobs on Vertex AI. For example, you can use a customer container to train with PyTorch.\n- **Extended support for distributed training.** With custom containers, you can do distributed training using any ML framework.\n- **Use the newest version.** You can also use the latest build or minor version of an ML framework. For example, you can build a custom container to train with `tf-nightly`.\n\nHyperparameter tuning with custom containers\n--------------------------------------------\n\nTo do [hyperparameter tuning](/vertex-ai/docs/training/hyperparameter-tuning-overview) on Vertex AI, you\nspecify goal metrics, along with whether to minimize or maximize each metric.\nFor example, you might want to maximize your model accuracy, or minimize your\nmodel loss. You also list the hyperparameters you'd like to tune, along with\nthe range of acceptable values for each hyperparameter. Vertex AI\ndoes multiple *trials* of your training application, tracking and adjusting the\nhyperparameters after each trial. When the hyperparameter tuning job is\ncomplete, Vertex AI reports values for the most effective\nconfiguration of your hyperparameters, and a summary for each trial.\n\nTo do hyperparameter tuning with custom containers, you need to make\nthe following adjustments:\n\n- In your Dockerfile: install [`cloudml-hypertune`](https://github.com/GoogleCloudPlatform/cloudml-hypertune).\n- In your training code:\n - Use `cloudml-hypertune` to report the results of each trial by calling its helper function, [`report_hyperparameter_tuning_metric`](https://github.com/GoogleCloudPlatform/cloudml-hypertune/blob/master/hypertune/hypertune.py#L49).\n - Add command-line arguments for each hyperparameter, and handle the argument parsing with an argument parser such as [`argparse`](https://docs.python.org/3/library/argparse.html).\n\nSee how to [configure a hyperparameter tuning job that uses custom\ncontainers](/vertex-ai/docs/training/using-hyperparameter-tuning) or learn more about\n[how hyperparameter tuning works on Vertex AI](/vertex-ai/docs/training/hyperparameter-tuning-overview).\n\nGPUs in custom containers\n-------------------------\n\nFor training with GPUs, your custom container needs to meet a few special\nrequirements. You must build a different Docker image than what you'd use for\ntraining with CPUs.\n\n- Pre-install the CUDA toolkit and cuDNN in your Docker image. The recommended way to build a custom container with support for GPUs is to use the [`nvidia/cuda`](https://hub.docker.com/r/nvidia/cuda/) image as your base image for your custom container. The `nvidia/cuda` container image has matching versions of CUDA toolkit and cuDNN pre-installed, and it helps you set up the related environment variables correctly.\n- Install your training application, along with your required ML framework and other dependencies in your Docker image.\n\nSee an [example Dockerfile for training with GPUs](https://github.com/GoogleCloudPlatform/cloudml-samples/blob/master/pytorch/containers/quickstart/mnist/Dockerfile-gpu).\n\nWhat's next\n-----------\n\n- Learn more about how to [create a custom container for your training\n job](/vertex-ai/docs/training/create-custom-container)."]]