Skip to content

SmallDoges/flash-dmattn

SmallDoges

English | 简体中文

Flash-DMA Banner

Flash-DMA is a high-performance attention implementation that integrates Flash Attention's memory efficiency with Dynamic Mask Attention's sparse computation capabilities for processing extremely long sequences in transformer models.

Key Features

🎯 Core Kernel Advantages

  • 4D Mask & Bias Support: Native support for (batch_size, num_kv_heads, query_len, key_len) shaped attention mask and attention bias tensors
  • Intelligent Computation Skipping: Block-level automatic skipping mechanism based on masks, completely bypassing computation and memory access for zero-mask blocks
  • Complete Gradient Support: Built-in full gradient computation path for attention bias, supporting end-to-end training

🚀 Performance & Efficiency

  • Dynamic Sparse Attention: Dynamically selects the most relevant keys for each query, reducing computational complexity from $O(N^2)$ to $O(N \cdot w)$ where $w \ll N$, supporting trainable sparse structures
  • Memory Efficiency: Maintains Flash Attention's $O(N)$ memory complexity without instantiating the full attention matrix
  • CUDA Deep Optimization: Custom CUDA kernels with shared memory aliasing, pipelined prefetching, and block skipping for high throughput and low memory access overhead
  • Extremely Long Context Support: Handles 128K+ token sequences efficiently through dynamic mask windowing while preserving accuracy

Performance

We present expected speedup of Flash-DMA over standard PyTorch SDPA.


Forward Pass Performance

The following table shows the forward pass performance comparison between Flash-DMA and standard PyTorch SDPA on an NVIDIA A100-SXM4-80GB. Results are averaged over 3 runs after 2 warmup runs.

Mode Q len K len Window W SDPA (ms) FDMA (ms) Speedup
Train 256 256 1024 0.29 0.19 1.58x
Train 512 512 1024 0.35 0.19 1.86x
Train 1024 1024 1024 0.51 0.18 2.81x
Train 2048 2048 1024 1.04 0.18 5.68x
Train 4096 4096 1024 2.53 0.24 10.41x
Train 8192 8192 1024 9.38 0.36 25.93x
Train 16384 16384 1024 28.39 0.81 35.25x
Train 32768 32768 1024 111.87 2.25 49.78x
Train 32768 32768 32 113.19 2.10 53.97x
Train 32768 32768 64 113.17 2.12 53.32x
Train 32768 32768 128 113.14 2.10 53.78x
Train 32768 32768 256 113.18 2.13 53.18x
Train 32768 32768 512 113.19 2.17 52.17x
Train 32768 32768 1024 113.19 2.24 50.45x
Train 32768 32768 2048 113.15 2.39 47.35x
Train 32768 32768 4096 113.16 2.67 42.39x
Train 32768 32768 8192 113.11 3.20 35.29x
Train 32768 32768 16384 113.15 3.97 28.51x
Train 32768 32768 32768 113.11 4.90 23.10x
Infer 1 256 1024 0.25 0.19 1.28x
Infer 1 512 1024 0.25 0.19 1.27x
Infer 1 1024 1024 0.25 0.20 1.28x
Infer 1 2048 1024 0.25 0.20 1.24x
Infer 1 4096 1024 0.25 0.19 1.29x
Infer 1 8192 1024 0.25 0.20 1.25x
Infer 1 16384 1024 0.25 0.19 1.29x
Infer 1 32768 1024 0.27 0.20 1.33x
Infer 1 65536 1024 0.42 0.20 2.10x
Infer 1 131072 1024 0.72 0.20 3.65x
Infer 1 262144 1024 1.31 0.22 6.06x
Infer 1 524288 1024 2.49 0.24 10.45x
Infer 1 524288 32 2.48 0.21 11.60x
Infer 1 524288 64 2.44 0.21 11.66x
Infer 1 524288 128 2.45 0.21 11.47x
Infer 1 524288 256 2.43 0.21 11.47x
Infer 1 524288 512 2.44 0.22 10.89x
Infer 1 524288 1024 2.44 0.24 10.31x
Infer 1 524288 2048 2.44 0.27 9.07x
Infer 1 524288 4096 2.45 0.33 7.41x
Infer 1 524288 8192 2.44 0.35 6.93x
Infer 1 524288 16384 2.44 0.35 6.93x
Infer 1 524288 32768 2.45 0.35 6.96x
Infer 1 524288 65536 2.44 0.35 6.88x

Backward Pass Performance

The following table shows the backward pass performance comparison between Flash-DMA and standard PyTorch SDPA on an NVIDIA A100-SXM4-80GB. Results are averaged over 3 runs after 2 warmup runs.

Mode Q len K len Window W SDPA-BWD (ms) FDMA-BWD (ms) Speedup
Train 256 256 1024 0.42 0.62 0.7x
Train 512 512 1024 0.56 0.60 0.9x
Train 1024 1024 1024 0.94 0.61 1.5x
Train 2048 2048 1024 1.79 0.69 2.6x
Train 4096 4096 1024 3.76 1.08 3.5x
Train 8192 8192 1024 14.39 2.06 7.0x
Train 16384 16384 1024 39.56 4.97 8.0x
Train 32768 32768 1024 142.07 25.63 5.5x
Train 32768 32768 32 142.70 21.91 6.5x
Train 32768 32768 64 142.65 22.29 6.4x
Train 32768 32768 128 142.69 23.04 6.2x
Train 32768 32768 256 142.69 24.27 5.9x
Train 32768 32768 512 142.67 25.12 5.7x
Train 32768 32768 1024 142.55 25.58 5.6x
Train 32768 32768 2048 142.75 25.64 5.6x
Train 32768 32768 4096 142.61 24.84 5.7x
Train 32768 32768 8192 142.33 25.63 5.6x
Train 32768 32768 16384 142.40 25.62 5.6x
Train 32768 32768 32768 142.43 25.63 5.6x

Installation

Prerequisites

  • Python: 3.8 or later
  • PyTorch: 2.0.0 or later
  • CUDA: 11.8 or later
  • NVIDIA GPU: Compute Capability 8.0 or higher
  • C++ Compiler: GCC 7+

CUDA Environment Setup

Ensure your CUDA environment is properly configured:

# Check CUDA installation
nvcc --version

# Set CUDA_HOME if needed
export CUDA_HOME=/usr/local/cuda

Install from Source

git clone https://github.com/SmallDoges/flash-dmattn.git
cd flash-dmattn
MAX_JOBS=4 pip install . --no-build-isolation

Quick Start

Basic Usage

import torch
from flash_dmattn import flash_dmattn_func_auto
import math

# Setup
batch_size, seq_len, num_heads, num_kv_heads, head_dim = 1, 256, 2, 1, 64
keep_window_size = 128
device = torch.device('cuda')
dtype = torch.bfloat16
min_dtype = torch.finfo(dtype).min  # dtype minimum value

# Input tensors
query = torch.randn(batch_size, seq_len, num_heads, head_dim, device=device, dtype=dtype)
key = torch.randn(batch_size, seq_len, num_kv_heads, head_dim, device=device, dtype=dtype)
value = torch.randn(batch_size, seq_len, num_kv_heads, head_dim, device=device, dtype=dtype)

# Create mask and bias for sparse attention
attention_mask = torch.ones(batch_size, num_kv_heads, seq_len, seq_len, device=device, dtype=dtype)
attention_bias = torch.randn(batch_size, num_kv_heads, seq_len, seq_len, device=device, dtype=dtype)

# Generate sparse mask based on bias
if seq_len > keep_window_size:
    # Select top-k most important keys for each query
    topk_values, topk_indices = torch.topk(
        attention_bias, keep_window_size, dim=-1, 
        largest=True, sorted=False
    )
    # Generate valid top-k mask
    valid_topk = (topk_values != min_dtype).to(dtype)
    attention_mask = torch.zeros_like(attention_bias, dtype=dtype, device=attention_bias.device)
    attention_mask = attention_mask.scatter(-1, topk_indices, valid_topk)
    attention_bias = attention_bias.masked_fill(attention_mask == 0.0, min_dtype)

# Select FDMA kernel
flash_dmattn_func = flash_dmattn_func_auto(backend="cuda")

# Run Flash Dynamic Mask Attention
output = flash_dmattn_func(
    query=query,
    key=key,
    value=value,
    attn_mask=attention_mask,
    attn_bias=attention_bias,
    is_causal=True,
    scale=1.0/math.sqrt(head_dim),
)

print(f"Output shape: {output.shape}")  # [1, 256, 2, 64]

Gradient Computation Example

# Enable gradient computation
query.requires_grad_(True)
key.requires_grad_(True)
value.requires_grad_(True)
attention_bias.requires_grad_(True)

# Forward pass
output = flash_dmattn_func(
    query=query, key=key, value=value,
    attn_mask=attention_mask,
    attn_bias=attention_bias,
    is_causal=True,
    scale=1.0/math.sqrt(head_dim)
)

# Backward pass
loss = output.sum()
loss.backward()

print(f"Query gradient shape: {query.grad.shape}")
print(f"Key gradient shape: {key.grad.shape}")
print(f"Value gradient shape: {value.grad.shape}")
print(f"Bias gradient shape: {attention_bias.grad.shape}")

How It Works

Flash-DMA integrates the efficient memory access patterns of Flash Attention with the sparse computation capabilities of dynamic mask attention to achieve an efficient attention mechanism.

Core Technology Integration

  • 🎯 Native 4D Mask & Bias Support: Kernels directly process (batch_size, num_kv_heads, query_len, key_len) shaped tensors
  • ⚡ Block-level Intelligent Skipping: Unified OR-reduction skipping logic based on masks, completely avoiding computation and memory access for zero blocks
  • 🔄 Complete Gradient Chain: Built-in attention bias gradient computation (dbias) supporting end-to-end differentiable training

Key Optimization Strategies

  1. Unified Skip Logic: Forward and backward passes use the same block-level skip decisions
  2. Memory Access Optimization: K/V data loaded only when OR(mask_block) == true
  3. Gradient Path Completeness: dbias gradient computation fully fused in backward kernels
  4. Shared Memory Reuse: sMask ↔ sP, sBias ↔ sdS intelligent aliasing

Documentation

📚 Complete documentation is available in the docs directory:

  • API Reference - Complete function documentation and usage examples
  • Integration Guide - Detailed technical documentation of the Flash Attention integration

Building from Source

Development Setup

# Clone with submodules
git clone https://github.com/SmallDoges/flash-dmattn.git
cd flash-dmattn

# Build in development mode
pip install -e .

# Run tests to verify installation
python -c "import flash_dma_cuda; print('✅ Flash DMA CUDA extension imported successfully')"

Build Requirements

  • CUDA Toolkit 11.8+
  • CUTLASS library
  • PyTorch with CUDA support

Supported Architectures

  • SM 8.0
  • SM 9.0
  • SM 10.0
  • SM 12.0

Note: Flash Dynamic Mask Attention requires CUDA compute capability 8.0+ for optimal performance. Earlier architectures are not supported.

Benchmarking

Flash-DMA provides comprehensive benchmarking tools to evaluate performance across different configurations:

Forward Pass Equivalence

python benchmarks/forward_equivalence.py

Validates numerical consistency between Python reference and CUDA implementation.

Forward Pass Performance Benchmarking

python benchmarks/forward_performance.py

Compares Flash-DMA against standard SDPA across various sequence lengths and batch sizes.

Backward Pass Equivalence

python benchmarks/backward_equivalence.py

Validates numerical consistency between Python reference and CUDA implementation.

Backward Pass Performance Benchmarking

python benchmarks/backward_performance.py

Compares Flash-DMA against standard SDPA across various sequence lengths and batch sizes.

Gradient Computation

python benchmarks/grad_equivalence.py

Tests backward pass implementation and gradient equivalence.

Troubleshooting

Common Issues

Compilation Errors

# Ensure CUDA_HOME is set correctly
echo $CUDA_HOME         # Linux/Mac
echo $env:CUDA_HOME     # Windows PowerShell

# Check CUDA toolkit version
nvcc --version

# Verify PyTorch CUDA support
python -c "import torch; print(f'CUDA available: {torch.cuda.is_available()}')"

Import Errors

# Test basic import
try:
    from flash_dmattn import flash_dmattn_func, get_available_backends
    print("✅ Flash Dynamic Mask Attention imported successfully")
    print(f"Available backends: {get_available_backends()}")
except ImportError as e:
    print(f"❌ Import failed: {e}")
    print("Please ensure the package is properly installed with: pip install -e .")

Performance Issues

# Monitor GPU memory usage
from flash_dmattn import flash_dmattn_func

def print_memory_stats():
    if torch.cuda.is_available():
        print(f"GPU Memory: {torch.cuda.memory_allocated() / 1e9:.2f} GB")

print_memory_stats()
output = flash_dmattn_func(q=query, k=key, v=value, is_causal=True)
print_memory_stats()

# Clear cache if needed
torch.cuda.empty_cache()

Contributing

We welcome contributions from the community! Flash-DMA is an open-source project and we value all types of contributions.

How to Contribute

  • Report bugs: Found a bug? Please open an issue
  • Request features: Have an idea for improvement? Let us know
  • Submit code: Ready to contribute code? Check our Contributing Guide
  • Improve docs: Help us make the documentation better

Quick Start for Contributors

  1. Fork the repository
  2. Create a feature branch: git checkout -b feature-name
  3. Make your changes and test them
  4. Submit a pull request

For detailed instructions, see our Contributing Guide.

Code of Conduct

This project follows the Contributor Covenant Code of Conduct. By participating, you are expected to uphold this code.

License

This project is licensed under the BSD 3-Clause License. See LICENSE for details.

Citation

If you use Flash-DMA in your research, please cite:

@misc{shi2025trainabledynamicmasksparse,
      title={Trainable Dynamic Mask Sparse Attention}, 
      author={Jingze Shi and Yifan Wu and Bingheng Wu and Yiran Peng and Liangdong Wang and Guang Liu and Yuyu Luo},
      year={2025},
      eprint={2508.02124},
      archivePrefix={arXiv},
      primaryClass={cs.AI},
      url={https://arxiv.org/abs/2508.02124}, 
}

Acknowledgments

This project builds upon and integrates several excellent works:

We thank the open-source community for their contributions to efficient transformer implementations. 🤗