Skip to content

'eos_token_id' for llama model.generate is not working #24644

@devymex

Description

@devymex

System Info

  • transformers version: 4.30.2
  • Platform: Linux-5.4.0-137-generic-x86_64-with-glibc2.31
  • Python version: 3.10.0
  • Huggingface_hub version: 0.15.1
  • Safetensors version: 0.3.1
  • PyTorch version (GPU?): 2.0.1+cu117 (True)
  • Tensorflow version (GPU?): not installed (NA)
  • Flax version (CPU?/GPU?/TPU?): not installed (NA)
  • Jax version: not installed
  • JaxLib version: not installed
  • Using GPU in script?:
  • Using distributed or parallel set-up in script?:

Who can help?

No response

Information

  • The official example scripts
  • My own modified scripts

Tasks

  • An officially supported task in the examples folder (such as GLUE/SQuAD, ...)
  • My own task or dataset (give details below)

Reproduction

import transformers, torch

weights_dir = "weights/recovered"
question = 'Hello, there!'

model = transformers.AutoModelForCausalLM.from_pretrained(weights_dir)
model = model.cuda()
print(model.config)
# LlamaConfig {
#   "_name_or_path": "weights/recovered",
#   "architectures": [
#     "LlamaForCausalLM"
#   ],
#   "bos_token_id": 1,
#   "eos_token_id": 2,
#   "hidden_act": "silu",
#   "hidden_size": 4096,
#   "initializer_range": 0.02,
#   "intermediate_size": 11008,
#   "max_position_embeddings": 2048,
#   "model_type": "llama",
#   "num_attention_heads": 32,
#   "num_hidden_layers": 32,
#   "pad_token_id": 0,
#   "rms_norm_eps": 1e-06,
#   "tie_word_embeddings": false,
#   "torch_dtype": "float32",
#   "transformers_version": "4.30.2",
#   "use_cache": true,
#   "vocab_size": 32001
# }

tokenizer = transformers.AutoTokenizer.from_pretrained(weights_dir)
question_ids = tokenizer.encode(question + tokenizer.eos_token, return_tensors='pt')
question_ids = question_ids.cuda()

print(tokenizer.eos_token_id, tokenizer.bos_token_id, tokenizer.pad_token_id)
# 2, 1, 32000

print(question_ids)
# tensor([[    1, 15043, 29892,   727, 29991,   829, 29879, 29958]],
       device='cuda:0')

print(tokenizer.decode(question_ids[0]))
# <s> Hello, there!</s>

outputs = model.generate(
        question_ids,
        eos_token_id=2,
        max_new_tokens=200,
        num_beams=4,
        num_return_sequences=2,
        early_stopping=True
    )
answer = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(answer)
# Hello, there!</s>
# Hello, there!</s>
# <s>Hello, there!</s>

No matter how I changing the parameters of model.generate, it always ignores the </s> as the ending token (id:2).

In addition, the skip_special_tokens of tokenizer is not working too.

Where am I doing wrong? Please help, many thanks!

Expected behavior

The model.generate stop at the first time of </s>

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions