Easy-to-use,Modular and Extendible package of deep-learning based CTR models .
-
Updated
Aug 9, 2024 - Python
Easy-to-use,Modular and Extendible package of deep-learning based CTR models .
Recommendation Algorithmๅคง่งๆจกๆจ่็ฎๆณๅบ๏ผๅ ๅซๆจ่็ณป็ป็ปๅ ธๅๆๆฐ็ฎๆณLRใWide&DeepใDSSMใTDMใMINDใWord2VecใBert4RecใDeepWalkใSSRใAITM๏ผDSIN๏ผSIGN๏ผIPRECใGRU4RecใYoutube_dnnใNCFใGNNใFMใFFMใDeepFMใDCNใDINใDIENใDLRMใMMOEใPLEใESMMใESCMM, MAMLใxDeepFMใDeepFEFMใNFMใAFMใRALMใDMRใGateNetใNAMLใDIFMใDeep CrossingใPNNใBSTใAutoIntใFGCNNใFLENใFibinetใListWiseใDeepRecใENSFM๏ผTiSAS๏ผAutoFIโฆ
ใPyTorchใEasy-to-use,Modular and Extendible package of deep-learning based CTR models.
A framework for large scale recommendation algorithms.
Tensorflow implementation of DeepFM for CTR prediction.
Recommender Learning with Tensorflow2.x
Factorization Machine models in PyTorch
CTR prediction models based on deep learning(ๅบไบๆทฑๅบฆๅญฆไน ็ๅนฟๅๆจ่CTR้ขไผฐๆจกๅ)
MLGB is a library that includes many models of CTR Prediction & Recommender System by TensorFlow & PyTorch. ใๅฆ่ฎกๅ ใๆฏไธไธชๅ ๅซ50+็นๅป็้ขไผฐๅๆจ่็ณป็ปๆทฑๅบฆๆจกๅ็ใ้่ฟTensorFlowๅPyTorchๆฐๅ็ๅบใ
ๅ็่งฃๆๅไปฃ็ ๅฎๆ๏ผๆจ่็ฎๆณไนๅฏไปฅๅพ็ฎๅ ๐ฅ ๆณ่ฆ็ณป็ป็ๅญฆไน ๆจ่็ฎๆณ็ๅฐไผไผด๏ผๆฌข่ฟ Star ๆ่ Fork ๅฐ่ชๅทฑไปๅบ่ฟ่กๅญฆไน ๐ ๆไปปไฝ็้ฎๆฌข่ฟๆ Issues๏ผไนๅฏๅ ๆๆซ็่็ณปๆนๅผๅๆ่ฏข้ฎ๏ผ
DeepTables: Deep-learning Toolkit for Tabular data
TensorFlow Script
Official code for "DaisyRec 2.0: Benchmarking Recommendation for Rigorous Evaluation" (TPAMI2022) and "Are We Evaluating Rigorously? Benchmarking Recommendation for Reproducible Evaluation and Fair Comparison" (RecSys2020)
A PyTorch implementation of DeepFM for CTR prediction problem.
CTRๆจกๅไปฃ็ ๅๅญฆไน ็ฌ่ฎฐๆป็ป
Comprehensive and Rigorous Framework for Reproducible Recommender Systems Evaluation
4th Place Solution for Mercari Price Suggestion Competition on Kaggle using DeepFM variant.
ไธปๆตๆจ่็ณป็ปRank็ฎๆณ็ๅฎ็ฐ
Add a description, image, and links to the deepfm topic page so that developers can more easily learn about it.
To associate your repository with the deepfm topic, visit your repo's landing page and select "manage topics."