Skip to content
#

isolation-forest-algorithm

Here are 36 public repositories matching this topic...

Surface water quality data analysis and prediction of Potomac River, West Virginia, USA. Using time series forecasting, and anomaly detection : ARIMA, SARIMA, Isolation Forest, OCSVM and Gaussian Distribution

  • Updated Jun 6, 2020
  • Jupyter Notebook

In Machine Learning, anomaly detection (outlier detection) is the identification of rare items, events or observations which raise suspicions by differing significantly from the majority of the data. Typically the anomalous items will translate to some kind of problem such as bank fraud, a structural defect, medical problems or errors in a text.…

  • Updated Jan 23, 2020
  • Jupyter Notebook

Improve this page

Add a description, image, and links to the isolation-forest-algorithm topic page so that developers can more easily learn about it.

Curate this topic

Add this topic to your repo

To associate your repository with the isolation-forest-algorithm topic, visit your repo's landing page and select "manage topics."

Learn more